Vanster commited on
Commit
283f6a9
1 Parent(s): 7ce6931

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 245.07 +/- 20.10
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7cd07af9fe20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cd07af9feb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cd07af9ff40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cd07afac040>", "_build": "<function ActorCriticPolicy._build at 0x7cd07afac0d0>", "forward": "<function ActorCriticPolicy.forward at 0x7cd07afac160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7cd07afac1f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cd07afac280>", "_predict": "<function ActorCriticPolicy._predict at 0x7cd07afac310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cd07afac3a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cd07afac430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7cd07afac4c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cd07b143700>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1717753704111953339, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALb7hT7acQk//P8nvoSUmr7RXyo9CSgXvQAAAAAAAAAAJg2APXHeJT8dRfi9nE92vuKhPrwmUAO9AAAAAAAAAAAzvfe8e4CMuhN5zzm/L4k2GlMXOxrO7rgAAIA/AACAPw1Fvb0pOFe6dHSVuuCmJbYJlz87T/irOQAAgD8AAIA/Gv+OPRSgkboGyyy6KxontLi1tToFUkg5AACAPwAAgD9NXJw97EmXuU1mjrliT/MzsPFmuyFLqDgAAIA/AACAP9pG073fOzQ+8kGEPa3MS74lTjo9yjdZvQAAAAAAAAAAGu9SveH4nbqL2dc6nlSyNSl/Nbpdifi5AACAPwAAgD8zjZq9rvGguhZMUjr1EUo1CK6pOGr1cbkAAAAAAACAP428J76PAkq4wXGrO1EbkzeBtQW8O2sguQAAgD8AAIA/0FxlvqcnJj8mfhQ+YDdTvozOGz1WR/27AAAAAAAAAACACoi9/YUNPgyRrz1d80K+m0X7Ohlru7wAAAAAAAAAAABw2DuPNkm6VX2DOZsAkzRLerA5guSauAAAgD8AAIA/usEwPvv9grwCzYw74NTFufdW7r2MU7m6AACAPwAAgD8KOFW+L6gzP8xahT2bXYW+aeGzO7KGkzsAAAAAAAAAADM2kr24boO51T3hOku1mzXGXhu72aoEugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGRVeFUQ042MAWyUTegDjAF0lEdAk7VgB5ooNXV9lChoBkdAcIq4fwI+n2gHTdIBaAhHQJO+Sp0fYBh1fZQoaAZHQGNidkrf+CNoB03oA2gIR0CTwR1Z1V5sdX2UKGgGR0Bl8aTyJ9ApaAdN6ANoCEdAk8QSuEEkjXV9lChoBkdAZFl71Iy0r2gHTegDaAhHQJPQaFdszl91fZQoaAZHQGRwkFOfukVoB03oA2gIR0CT0R12aDwpdX2UKGgGR0Birxz1bqyGaAdN6ANoCEdAk9GAymALA3V9lChoBkdAYBtCojv/i2gHTegDaAhHQJPUv4tYjjd1fZQoaAZHQGMOCTt9hJBoB03oA2gIR0CT14VDrqt6dX2UKGgGR0Bk3jNMXaakaAdN6ANoCEdAk9qteyAxz3V9lChoBkdAZPbkKeCkGmgHTegDaAhHQJPhMsDnvDx1fZQoaAZHQBomDcuanaZoB00EAWgIR0CT6DTzundgdX2UKGgGR0BdQi2Dxsl+aAdN6ANoCEdAk+vmYnfEXXV9lChoBkdAXJ58kUsWf2gHTegDaAhHQJPwyad+Xqt1fZQoaAZHQGNU/0dzXBhoB03oA2gIR0CT8dAOavzOdX2UKGgGR8AGAT9KmKqGaAdNKQFoCEdAk/kE/B3zMHV9lChoBkdAYc/ukUKzA2gHTegDaAhHQJP5OzgMtsh1fZQoaAZHQGP5f8l5WzZoB03oA2gIR0CT+YJMg2ZRdX2UKGgGR0BgM8+s5n14aAdN6ANoCEdAk/mqlHjIaXV9lChoBkdAYhaRigCfYmgHTegDaAhHQJQS7cmBvrJ1fZQoaAZHQGIwgggX/HZoB03oA2gIR0CUFeTNdJJ5dX2UKGgGR0Br6a3d9Dx9aAdN9QJoCEdAlBYQxnFo+XV9lChoBkdAZkgONo8IRmgHTegDaAhHQJQYrfuTibV1fZQoaAZHQGPnkyDZlFtoB03oA2gIR0CUKFnq3VkMdX2UKGgGR0BlEJC0F8ohaAdN6ANoCEdAlCi+WjXWfHV9lChoBkdARLBTXJ5miGgHTRYBaAhHQJQtA20iQkp1fZQoaAZHQFumyAxzq8loB03oA2gIR0CULwSEDhcadX2UKGgGR0BojJV0cOslaAdN6ANoCEdAlDJ/crRSg3V9lChoBkdAYrKBMBZIQWgHTegDaAhHQJQ8J0GNaQp1fZQoaAZHQGGCC2c8TzxoB03oA2gIR0CUPpJokAxSdX2UKGgGR0Bj0NpVS4vwaAdN6ANoCEdAlEHjijtXxXV9lChoBkdAXCnv3JxNqWgHTegDaAhHQJRCulgtvn91fZQoaAZHQGCYpRO1v2poB03oA2gIR0CUSf5kK/mDdX2UKGgGR0BjT6ydFvycaAdN6ANoCEdAlEour6tT1nV9lChoBkdAZKt37DVH4GgHTegDaAhHQJRKeSlnAZd1fZQoaAZHQF5QKZ2IO6NoB03oA2gIR0CUSqdYnv2HdX2UKGgGR0BkiXI+4b0faAdN6ANoCEdAlGffFJg9eXV9lChoBkdAZPt1+RYA82gHTegDaAhHQJRq1bGFSKp1fZQoaAZHQGYkqBun/DNoB03oA2gIR0CUawHq/ub7dX2UKGgGR0BkznitJWeZaAdN6ANoCEdAlHt2xyGSIXV9lChoBkdAZi/kz41xbWgHTegDaAhHQJR74Gu9vjx1fZQoaAZHQGRXB9srNGFoB03oA2gIR0CUgEKaoddWdX2UKGgGR0BhhF8JD3M7aAdN6ANoCEdAlIKVNcnmaHV9lChoBkdAYqomlZX+2mgHTegDaAhHQJSHRAMUh3d1fZQoaAZHQF2VZmqYJE9oB03oA2gIR0CUkgKTB68hdX2UKGgGR0BfAUcXFcY7aAdN6ANoCEdAlJRYBJZntnV9lChoBkdAYuxKAavRq2gHTegDaAhHQJSXZO1v2oN1fZQoaAZHQGA+W2PT5O9oB03oA2gIR0CUmCAUL2HtdX2UKGgGR0Bk7jz06HTJaAdN6ANoCEdAlJ6MneBQN3V9lChoBkdAaHC8e0XxfGgHTegDaAhHQJSettLteD51fZQoaAZHQGDwFPi1iONoB03oA2gIR0CUnvs6aLGadX2UKGgGR0BcDiOaOPvKaAdN6ANoCEdAlJ8jA31jAnV9lChoBkdAY5Ndk8Rtg2gHTegDaAhHQJS5t0bLlmx1fZQoaAZHQGTv/ub7TDxoB03oA2gIR0CUvYHmRvFWdX2UKGgGR0Bkkx9w3o9taAdN6ANoCEdAlL3Eadc0L3V9lChoBkdAZwlY9xIatWgHTegDaAhHQJTN5xjriVB1fZQoaAZHQGKtGmtQsPJoB03oA2gIR0CUzkymygPFdX2UKGgGR0BibJSYPXkHaAdN6ANoCEdAlNJ4HLRrrXV9lChoBkdAYhXYI0IkaGgHTegDaAhHQJTUW0dBBzF1fZQoaAZHQGYxUvwmVqxoB03oA2gIR0CU15ktVaOhdX2UKGgGR0BmqJshxHXmaAdN6ANoCEdAlOD7AP/aQHV9lChoBkdAX7XV+Zw4sGgHTegDaAhHQJTjbv1DjR51fZQoaAZHQGMtt/OMVDdoB03oA2gIR0CU5qCj1wo9dX2UKGgGR0BhgVGy5Zr6aAdN6ANoCEdAlOdrv9cbBHV9lChoBkdAYiz0bLlmvmgHTegDaAhHQJTxLbN8ma91fZQoaAZHQGYZArYoRZloB03oA2gIR0CU8XtaIN3GdX2UKGgGR0BccsuWa+ewaAdN6ANoCEdAlPHsxTKkmHV9lChoBkdAZKH79hqj8GgHTegDaAhHQJTyKqyWzGB1fZQoaAZHQGDl4+bExZdoB03oA2gIR0CVDOtQsPJ8dX2UKGgGR0Be2Dc/MW43aAdN6ANoCEdAlRAiLdepoHV9lChoBkdAYbZ/xUedTmgHTegDaAhHQJUQUfq5byJ1fZQoaAZHQGVDWhysCDFoB03oA2gIR0CVIvjh1klNdX2UKGgGR0BkT+Mn7YTTaAdN6ANoCEdAlSOFPBSDRXV9lChoBkdAZkzWAf+0gWgHTegDaAhHQJUo25Xlr/N1fZQoaAZHQGGHWNm16VtoB03oA2gIR0CVKtwm3OObdX2UKGgGR0BkZcC/47A+aAdN6ANoCEdAlS5oZuQ6qHV9lChoBkdAZRvFCLMs6WgHTegDaAhHQJU4UQ5FPSF1fZQoaAZHQGJuCc5Ke05oB03oA2gIR0CVOsO32EkCdX2UKGgGR0BmzoiRnvlVaAdN6ANoCEdAlT3Beb/ff3V9lChoBkdAZe4TJQtSRGgHTegDaAhHQJU+iphnanJ1fZQoaAZHQGKeAhB7eEZoB03oA2gIR0CVRXFSsKb8dX2UKGgGR0Bm/wjv/io9aAdN6ANoCEdAlUWgsbvPT3V9lChoBkdAZEPqynk1dmgHTegDaAhHQJVF7CqIacZ1fZQoaAZHQGD0mdy1eBxoB03oA2gIR0CVRhcY64lQdX2UKGgGR0BmMFPznRsuaAdN6ANoCEdAlWKWFajesXV9lChoBkdAYLdD1oQFtGgHTegDaAhHQJVlr4mCyyF1fZQoaAZHQGCj0/fO2RdoB03oA2gIR0CVZeEGJN0vdX2UKGgGR0Blj5oysS00aAdN6ANoCEdAlXbeTNdJKHV9lChoBkdAZNgAU+LWJGgHTegDaAhHQJV3R40Mw111fZQoaAZHQGJVENvwVj9oB03oA2gIR0CVe67eVLSNdX2UKGgGR0Bobgl8gIQfaAdN6ANoCEdAlX2CXY150XV9lChoBkdAYLfTwUg0TGgHTegDaAhHQJWAuO938oB1fZQoaAZHQGN1krGza9NoB03oA2gIR0CVjJdEsrd4dX2UKGgGR0BkLaFK02LpaAdN6ANoCEdAlY8rS7Xg+HV9lChoBkdAX2PmyPdVN2gHTegDaAhHQJWSMK0D2al1fZQoaAZHQGQfeFtbcGloB03oA2gIR0CVku2Pkq+bdX2UKGgGR0BihQ/iYLLIaAdN6ANoCEdAlZnqUeMho3V9lChoBkdAYFLm+0w8GWgHTegDaAhHQJWaG8J2MbZ1fZQoaAZHQGMOQ/5ckdFoB03oA2gIR0CVmmRTS9dvdX2UKGgGR0BlHQK2KEWZaAdN6ANoCEdAlZqO/Yao/HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:966f3297e8b165ddc97e6ca2e644e9012b7e5ce6da50c88851e7c06fff6d99a4
3
+ size 148088
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7cd07af9fe20>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cd07af9feb0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cd07af9ff40>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cd07afac040>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7cd07afac0d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7cd07afac160>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7cd07afac1f0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cd07afac280>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7cd07afac310>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cd07afac3a0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cd07afac430>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7cd07afac4c0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7cd07b143700>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1717753704111953339,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALb7hT7acQk//P8nvoSUmr7RXyo9CSgXvQAAAAAAAAAAJg2APXHeJT8dRfi9nE92vuKhPrwmUAO9AAAAAAAAAAAzvfe8e4CMuhN5zzm/L4k2GlMXOxrO7rgAAIA/AACAPw1Fvb0pOFe6dHSVuuCmJbYJlz87T/irOQAAgD8AAIA/Gv+OPRSgkboGyyy6KxontLi1tToFUkg5AACAPwAAgD9NXJw97EmXuU1mjrliT/MzsPFmuyFLqDgAAIA/AACAP9pG073fOzQ+8kGEPa3MS74lTjo9yjdZvQAAAAAAAAAAGu9SveH4nbqL2dc6nlSyNSl/Nbpdifi5AACAPwAAgD8zjZq9rvGguhZMUjr1EUo1CK6pOGr1cbkAAAAAAACAP428J76PAkq4wXGrO1EbkzeBtQW8O2sguQAAgD8AAIA/0FxlvqcnJj8mfhQ+YDdTvozOGz1WR/27AAAAAAAAAACACoi9/YUNPgyRrz1d80K+m0X7Ohlru7wAAAAAAAAAAABw2DuPNkm6VX2DOZsAkzRLerA5guSauAAAgD8AAIA/usEwPvv9grwCzYw74NTFufdW7r2MU7m6AACAPwAAgD8KOFW+L6gzP8xahT2bXYW+aeGzO7KGkzsAAAAAAAAAADM2kr24boO51T3hOku1mzXGXhu72aoEugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGRVeFUQ042MAWyUTegDjAF0lEdAk7VgB5ooNXV9lChoBkdAcIq4fwI+n2gHTdIBaAhHQJO+Sp0fYBh1fZQoaAZHQGNidkrf+CNoB03oA2gIR0CTwR1Z1V5sdX2UKGgGR0Bl8aTyJ9ApaAdN6ANoCEdAk8QSuEEkjXV9lChoBkdAZFl71Iy0r2gHTegDaAhHQJPQaFdszl91fZQoaAZHQGRwkFOfukVoB03oA2gIR0CT0R12aDwpdX2UKGgGR0Birxz1bqyGaAdN6ANoCEdAk9GAymALA3V9lChoBkdAYBtCojv/i2gHTegDaAhHQJPUv4tYjjd1fZQoaAZHQGMOCTt9hJBoB03oA2gIR0CT14VDrqt6dX2UKGgGR0Bk3jNMXaakaAdN6ANoCEdAk9qteyAxz3V9lChoBkdAZPbkKeCkGmgHTegDaAhHQJPhMsDnvDx1fZQoaAZHQBomDcuanaZoB00EAWgIR0CT6DTzundgdX2UKGgGR0BdQi2Dxsl+aAdN6ANoCEdAk+vmYnfEXXV9lChoBkdAXJ58kUsWf2gHTegDaAhHQJPwyad+Xqt1fZQoaAZHQGNU/0dzXBhoB03oA2gIR0CT8dAOavzOdX2UKGgGR8AGAT9KmKqGaAdNKQFoCEdAk/kE/B3zMHV9lChoBkdAYc/ukUKzA2gHTegDaAhHQJP5OzgMtsh1fZQoaAZHQGP5f8l5WzZoB03oA2gIR0CT+YJMg2ZRdX2UKGgGR0BgM8+s5n14aAdN6ANoCEdAk/mqlHjIaXV9lChoBkdAYhaRigCfYmgHTegDaAhHQJQS7cmBvrJ1fZQoaAZHQGIwgggX/HZoB03oA2gIR0CUFeTNdJJ5dX2UKGgGR0Br6a3d9Dx9aAdN9QJoCEdAlBYQxnFo+XV9lChoBkdAZkgONo8IRmgHTegDaAhHQJQYrfuTibV1fZQoaAZHQGPnkyDZlFtoB03oA2gIR0CUKFnq3VkMdX2UKGgGR0BlEJC0F8ohaAdN6ANoCEdAlCi+WjXWfHV9lChoBkdARLBTXJ5miGgHTRYBaAhHQJQtA20iQkp1fZQoaAZHQFumyAxzq8loB03oA2gIR0CULwSEDhcadX2UKGgGR0BojJV0cOslaAdN6ANoCEdAlDJ/crRSg3V9lChoBkdAYrKBMBZIQWgHTegDaAhHQJQ8J0GNaQp1fZQoaAZHQGGCC2c8TzxoB03oA2gIR0CUPpJokAxSdX2UKGgGR0Bj0NpVS4vwaAdN6ANoCEdAlEHjijtXxXV9lChoBkdAXCnv3JxNqWgHTegDaAhHQJRCulgtvn91fZQoaAZHQGCYpRO1v2poB03oA2gIR0CUSf5kK/mDdX2UKGgGR0BjT6ydFvycaAdN6ANoCEdAlEour6tT1nV9lChoBkdAZKt37DVH4GgHTegDaAhHQJRKeSlnAZd1fZQoaAZHQF5QKZ2IO6NoB03oA2gIR0CUSqdYnv2HdX2UKGgGR0BkiXI+4b0faAdN6ANoCEdAlGffFJg9eXV9lChoBkdAZPt1+RYA82gHTegDaAhHQJRq1bGFSKp1fZQoaAZHQGYkqBun/DNoB03oA2gIR0CUawHq/ub7dX2UKGgGR0BkznitJWeZaAdN6ANoCEdAlHt2xyGSIXV9lChoBkdAZi/kz41xbWgHTegDaAhHQJR74Gu9vjx1fZQoaAZHQGRXB9srNGFoB03oA2gIR0CUgEKaoddWdX2UKGgGR0BhhF8JD3M7aAdN6ANoCEdAlIKVNcnmaHV9lChoBkdAYqomlZX+2mgHTegDaAhHQJSHRAMUh3d1fZQoaAZHQF2VZmqYJE9oB03oA2gIR0CUkgKTB68hdX2UKGgGR0BfAUcXFcY7aAdN6ANoCEdAlJRYBJZntnV9lChoBkdAYuxKAavRq2gHTegDaAhHQJSXZO1v2oN1fZQoaAZHQGA+W2PT5O9oB03oA2gIR0CUmCAUL2HtdX2UKGgGR0Bk7jz06HTJaAdN6ANoCEdAlJ6MneBQN3V9lChoBkdAaHC8e0XxfGgHTegDaAhHQJSettLteD51fZQoaAZHQGDwFPi1iONoB03oA2gIR0CUnvs6aLGadX2UKGgGR0BcDiOaOPvKaAdN6ANoCEdAlJ8jA31jAnV9lChoBkdAY5Ndk8Rtg2gHTegDaAhHQJS5t0bLlmx1fZQoaAZHQGTv/ub7TDxoB03oA2gIR0CUvYHmRvFWdX2UKGgGR0Bkkx9w3o9taAdN6ANoCEdAlL3Eadc0L3V9lChoBkdAZwlY9xIatWgHTegDaAhHQJTN5xjriVB1fZQoaAZHQGKtGmtQsPJoB03oA2gIR0CUzkymygPFdX2UKGgGR0BibJSYPXkHaAdN6ANoCEdAlNJ4HLRrrXV9lChoBkdAYhXYI0IkaGgHTegDaAhHQJTUW0dBBzF1fZQoaAZHQGYxUvwmVqxoB03oA2gIR0CU15ktVaOhdX2UKGgGR0BmqJshxHXmaAdN6ANoCEdAlOD7AP/aQHV9lChoBkdAX7XV+Zw4sGgHTegDaAhHQJTjbv1DjR51fZQoaAZHQGMtt/OMVDdoB03oA2gIR0CU5qCj1wo9dX2UKGgGR0BhgVGy5Zr6aAdN6ANoCEdAlOdrv9cbBHV9lChoBkdAYiz0bLlmvmgHTegDaAhHQJTxLbN8ma91fZQoaAZHQGYZArYoRZloB03oA2gIR0CU8XtaIN3GdX2UKGgGR0BccsuWa+ewaAdN6ANoCEdAlPHsxTKkmHV9lChoBkdAZKH79hqj8GgHTegDaAhHQJTyKqyWzGB1fZQoaAZHQGDl4+bExZdoB03oA2gIR0CVDOtQsPJ8dX2UKGgGR0Be2Dc/MW43aAdN6ANoCEdAlRAiLdepoHV9lChoBkdAYbZ/xUedTmgHTegDaAhHQJUQUfq5byJ1fZQoaAZHQGVDWhysCDFoB03oA2gIR0CVIvjh1klNdX2UKGgGR0BkT+Mn7YTTaAdN6ANoCEdAlSOFPBSDRXV9lChoBkdAZkzWAf+0gWgHTegDaAhHQJUo25Xlr/N1fZQoaAZHQGGHWNm16VtoB03oA2gIR0CVKtwm3OObdX2UKGgGR0BkZcC/47A+aAdN6ANoCEdAlS5oZuQ6qHV9lChoBkdAZRvFCLMs6WgHTegDaAhHQJU4UQ5FPSF1fZQoaAZHQGJuCc5Ke05oB03oA2gIR0CVOsO32EkCdX2UKGgGR0BmzoiRnvlVaAdN6ANoCEdAlT3Beb/ff3V9lChoBkdAZe4TJQtSRGgHTegDaAhHQJU+iphnanJ1fZQoaAZHQGKeAhB7eEZoB03oA2gIR0CVRXFSsKb8dX2UKGgGR0Bm/wjv/io9aAdN6ANoCEdAlUWgsbvPT3V9lChoBkdAZEPqynk1dmgHTegDaAhHQJVF7CqIacZ1fZQoaAZHQGD0mdy1eBxoB03oA2gIR0CVRhcY64lQdX2UKGgGR0BmMFPznRsuaAdN6ANoCEdAlWKWFajesXV9lChoBkdAYLdD1oQFtGgHTegDaAhHQJVlr4mCyyF1fZQoaAZHQGCj0/fO2RdoB03oA2gIR0CVZeEGJN0vdX2UKGgGR0Blj5oysS00aAdN6ANoCEdAlXbeTNdJKHV9lChoBkdAZNgAU+LWJGgHTegDaAhHQJV3R40Mw111fZQoaAZHQGJVENvwVj9oB03oA2gIR0CVe67eVLSNdX2UKGgGR0Bobgl8gIQfaAdN6ANoCEdAlX2CXY150XV9lChoBkdAYLfTwUg0TGgHTegDaAhHQJWAuO938oB1fZQoaAZHQGN1krGza9NoB03oA2gIR0CVjJdEsrd4dX2UKGgGR0BkLaFK02LpaAdN6ANoCEdAlY8rS7Xg+HV9lChoBkdAX2PmyPdVN2gHTegDaAhHQJWSMK0D2al1fZQoaAZHQGQfeFtbcGloB03oA2gIR0CVku2Pkq+bdX2UKGgGR0BihQ/iYLLIaAdN6ANoCEdAlZnqUeMho3V9lChoBkdAYFLm+0w8GWgHTegDaAhHQJWaG8J2MbZ1fZQoaAZHQGMOQ/5ckdFoB03oA2gIR0CVmmRTS9dvdX2UKGgGR0BlHQK2KEWZaAdN6ANoCEdAlZqO/Yao/HVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:051c9de617c6c708e24b9d9d135d353eaa139fab93576d6a79c653f42dce42d5
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd77535b1f2223c768cb0f76a8605a581022fb3ad254a3b85f86a07e0bad806f
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.3.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (194 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 245.07115951447003, "std_reward": 20.100200611248837, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-06-07T10:12:42.098126"}