File size: 8,483 Bytes
e65f5e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
import openai
import pandas as pd
import numpy as np
# from openai.embeddings_utils import get_embedding
from transformers import GPT2TokenizerFast
from tqdm.auto import tqdm
import os
tqdm.pandas()
import spacy
# import numpy as np
# Load spaCy model with GloVe embeddings
import en_core_web_sm
nlp = en_core_web_sm.load()
def custom_embedding(text, model_name="text-embedding-ada-002"):
# Process the text with spaCy
doc = nlp(text)
# Extract word embeddings and average them to get the text embedding
word_embeddings = [token.vector for token in doc if token.has_vector]
if not word_embeddings:
return None # No embeddings found for any word in the text
text_embedding = np.mean(word_embeddings, axis=0)
# Create a response dictionary
response = {
"data": [
{
"embedding": text_embedding.tolist(),
"index": 0,
"object": "embedding"
}
],
"model": model_name,
"object": "list",
"usage": {
"prompt_tokens": len(text.split()),
"total_tokens": len(text.split())
}
}
return response
# Example usage
text = "Rome"
response = custom_embedding(text)
if response["data"][0]["embedding"] is not None:
print(f"Custom Embedding for '{text}': {response['data'][0]['embedding']}")
else:
print(f"No embeddings found for words in '{text}'.")
print(response)
# import spacy
# import numpy as np
# Load spaCy model with GloVe embeddings
# import en_core_web_sm
nlp = en_core_web_sm.load()
def custom_embedding(text_list, model_name="text-embedding-ada-002"):
embeddings = []
for text in text_list:
# Process the text with spaCy
doc = nlp(text)
# Extract word embeddings and average them to get the text embedding
word_embeddings = [token.vector for token in doc if token.has_vector]
if not word_embeddings:
embeddings.append(None) # No embeddings found for any word in the text
else:
text_embedding = np.mean(word_embeddings, axis=0)
embeddings.append(text_embedding.tolist())
# Create a response dictionary
response = {
"data": [
{
"embedding": emb,
"index": idx,
"object": "embedding"
}
for idx, emb in enumerate(embeddings)
],
"model": model_name,
"object": "list",
"usage": {
"prompt_tokens": sum(len(text.split()) for text in text_list),
"total_tokens": sum(len(text.split()) for text in text_list)
}
}
return response
# Example usage
text = ["She is running", "Fitness is good", "I am hungry", "Basketball is healthy"]
response = custom_embedding(text)
for idx, embedding in enumerate(response["data"]):
if embedding["embedding"] is not None:
print(f"Custom Embedding for '{text[idx]}': {embedding['embedding']}")
else:
print(f"No embeddings found for words in '{text[idx]}'.")
print(response)
emb1 = response['data'][0]['embedding']
emb2 = response['data'][1]['embedding']
emb3 = response['data'][2]['embedding']
emb4 = response['data'][3]['embedding']
np.dot(emb1, emb2)
np.dot(emb2, emb4)
df = pd.read_csv('Dronealexa.csv')
df = df.dropna()
df.info()
df.head()
df['combined'] = "Title: " + df['Title'].str.strip() + "; URL: " + df['URL'].str.strip() + "; Publication Year: " + df['Publication Year'].astype(str).str.strip() + "; Abstract: " + df['Abstract'].str.strip()
df.head()
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")
df['n_tokens'] = df.combined.progress_apply(lambda x: len(tokenizer.encode(x)))
df = df[df.n_tokens < 8000]
df.info()
df.head()
# import spacy
# import numpy as np
# Load spaCy model with GloVe embeddings
# import en_core_web_sm
nlp = en_core_web_sm.load()
def get_embeddings(text, model):
# Process the text with spaCy
doc = model(text)
# Extract word embeddings and average them to get the text embedding
word_embeddings = [token.vector for token in doc if token.has_vector]
if not word_embeddings:
return None # No embeddings found for any word in the text
text_embedding = np.mean(word_embeddings, axis=0)
# Create a response dictionary
response = {
"data": [
{
"embedding": text_embedding.tolist(),
"index": 0,
"object": "embedding"
}
],
"model": model.meta["name"],
"object": "list",
"usage": {
"prompt_tokens": len(text.split()),
"total_tokens": len(doc)
}
}
return response
# Example usage
input_text = "Your input text goes here"
custom_model = nlp # You can replace this with any other spaCy model
# Renaming 'input_text' to avoid conflict with the built-in 'input' function
text_to_process = input_text
response = get_embeddings(text_to_process, custom_model)
if response["data"][0]["embedding"] is not None:
print(f"Custom Embedding for '{text_to_process}': {response['data'][0]['embedding']}")
else:
print(f"No embeddings found for words in '{text_to_process}'.")
print(response)
from tqdm import tqdm
batch_size = 2000
model_name = 'text-embedding-ada-002'
# Assuming df is your DataFrame
for i in tqdm(range(0, len(df.combined), batch_size)):
# find end of batch
i_end = min(i + batch_size, len(df.combined))
# Get embeddings for the current batch
batch_text = list(df.combined)[i:i_end]
# Initialize an empty list to store the embeddings for each text in the batch
batch_embeddings = []
# Process each text in the batch and get embeddings
for text in batch_text:
response = get_embeddings(text, nlp)
# Check if embeddings were found
if response and response["data"][0]["embedding"] is not None:
batch_embeddings.append(response["data"][0]["embedding"])
else:
# Handle the case where no embeddings are found for a text
batch_embeddings.append(None)
# Update the DataFrame with the embeddings
for j in range(i, i_end):
df.loc[j, 'ada_vector'] = str(batch_embeddings[j - i])
df.head()
df.info()
df['ada_vector'] = df.ada_vector.progress_apply(eval).progress_apply(np.array)
df.to_csv('embeddings_chatbot.csv',index=False)
df=pd.read_csv('embeddings_chatbot.csv')
user_query = input("Enter query - ")
query_response = get_embeddings(user_query, nlp)
if query_response["data"][0]["embedding"] is not None:
print(f"Embedding for '{user_query}': {query_response['data'][0]['embedding']}")
else:
print(f"No embeddings found for words in '{user_query}'.")
searchvector = get_embeddings(user_query, custom_model)["data"][0]["embedding"]
from sklearn.metrics.pairwise import cosine_similarity
# Assuming df['ada_vector'] contains the vectors you want to compare
# Ensure 'ada_vector' column contains valid numeric arrays
df['ada_vector'] = df['ada_vector'].apply(lambda x: np.array(x) if isinstance(x, (list, np.ndarray)) else x)
# Filter out rows where 'ada_vector' is not a valid numeric array
valid_rows = df['ada_vector'].apply(lambda x: isinstance(x, np.ndarray))
# Calculate cosine similarity only for valid rows
df.loc[valid_rows, 'similarities'] = df.loc[valid_rows, 'ada_vector'].apply(
lambda x: cosine_similarity([x], [searchvector])[0][0]
)
# If you are using the 'progress_apply' from the 'tqdm' library
# You can keep it as follows:
# df.loc[valid_rows, 'similarities'] = df.loc[valid_rows, 'ada_vector'].progress_apply(
# lambda x: cosine_similarity([x], [searchvector])[0][0]
# )
df.head()
df.sort_values('similarities', ascending = False)
result = df.sort_values('similarities', ascending = False).head(3)
result.head()
xc = list(result.combined)
def construct_prompt(query, xc):
context = ''
for i in range(3):
context += xc[i] + "\n"
header = """Answer the question as truthfully as possible using the provided context, and if the answer is not contained within the text below, say "I don't know."\n\nContext:\n"""
header += context + "\n\n Q: " + query + "\n A:"
return header
from transformers import pipeline
summarizer = pipeline("summarization")
Fresult = construct_prompt(user_query, xc)
summarizer("\n".join(xc), max_length=130, min_length=30, do_sample=False) |