File size: 1,752 Bytes
dbd8fcc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
---
license: apache-2.0
tags:
- moe
- frankenmoe
- merge
- mergekit
- lazymergekit
- NeuralNovel/Valor-7B-v0.1
- Toten5/Marcoroni-neural-chat-7B-v1
base_model:
- NeuralNovel/Valor-7B-v0.1
- Toten5/Marcoroni-neural-chat-7B-v1
---
# Valor_Macaroni_moe
Valor_Macaroni_moe is a Mixure of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [NeuralNovel/Valor-7B-v0.1](https://huggingface.co/NeuralNovel/Valor-7B-v0.1)
* [Toten5/Marcoroni-neural-chat-7B-v1](https://huggingface.co/Toten5/Marcoroni-neural-chat-7B-v1)
## 🧩 Configuration
```yaml
base_model: NeuralNovel/Valor-7B-v0.1
gate_mode: cheap_embed
experts:
- source_model: NeuralNovel/Valor-7B-v0.1
positive_prompts: ["What should I do if lost my mobile phone"]
- source_model: Toten5/Marcoroni-neural-chat-7B-v1
positive_prompts: ["I have 3 apples. I lost 2 out of it. After that my father gave me another 3. How many do I have now?"]
```
## 💻 Usage
```python
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Vasanth/Valor_Macaroni_moe"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` |