File size: 10,748 Bytes
7666abc
12f0a9d
7666abc
12f0a9d
7666abc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84186df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7666abc
 
 
 
 
 
 
 
 
 
 
84186df
7666abc
84186df
 
7666abc
 
 
 
 
 
 
 
84186df
7666abc
84186df
 
7666abc
 
 
 
 
 
 
 
84186df
7666abc
84186df
 
7666abc
 
 
 
 
 
 
 
84186df
7666abc
84186df
 
7666abc
 
 
 
 
 
 
 
84186df
7666abc
84186df
 
7666abc
 
 
 
 
 
 
 
 
 
 
 
 
 
84186df
7666abc
84186df
 
7666abc
 
 
 
84186df
7666abc
84186df
 
7666abc
 
 
 
 
 
84186df
7666abc
84186df
 
7666abc
 
 
 
84186df
0a22a80
84186df
0a22a80
7666abc
 
 
 
 
 
 
 
 
 
27cea42
7666abc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
# Vlogger
This repository is the official implementation of [Vlogger](https://arxiv.org/abs/2401.09414):

**[Vlogger: Make Your Dream A Vlog](https://arxiv.org/abs/2401.09414)**

Demo generated by our Vlogger: [Teddy Travel](https://youtu.be/ZRD1-jHbEGk)

##  Setup

### Prepare Environment
```
conda create -n vlogger python==3.10.11
conda activate vlogger
pip install -r requirements.txt
```

### Download our model and T2I base model

Our model is based on Stable diffusion v1.4, you may download [Stable Diffusion v1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4) and [OpenCLIP-ViT-H-14](https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K) to the director of ``` pretrained ```
.
Download our model(ShowMaker) checkpoint (from [google drive](https://drive.google.com/file/d/1pAH73kz2QRfD2Dxk4lL3SrHvLAlWcPI3/view?usp=drive_link) or [hugging face](https://huggingface.co/GrayShine/Vlogger/tree/main)) and save to the directory of ```pretrained```


Now under `./pretrained`, you should be able to see the following:
```
β”œβ”€β”€ pretrained
β”‚   β”œβ”€β”€ ShowMaker.pt
β”‚   β”œβ”€β”€ stable-diffusion-v1-4
β”‚   β”œβ”€β”€ OpenCLIP-ViT-H-14
β”‚   β”‚   β”œβ”€β”€ ...
└── └── β”œβ”€β”€ ...
        β”œβ”€β”€ ...
```
## Usage
### Inference for (T+I)2V 
Run the following command to get the (T+I)2V results:
```python
python sample_scripts/with_mask_sample.py
```
The generated video will be saved in ```results/mask_no_ref```.
### Inference for (T+I+ref)2V 
Run the following command to get the (T+I+ref)2V results:
```python
python sample_scripts/with_mask_ref_sample.py
```
The generated video will be saved in ```results/mask_ref```.
### Inference for LLM planning and make reference image
Run the following command to get script, actors and protagonist:
```python
python sample_scripts/vlog_write_script.py
```
The generated scripts will be saved in ```results/vlog/$your_story_dir/script```.

The generated reference images will be saved in ```results/vlog/$your_story_dir/img```.

!!!important: Enter your openai key in the 7th line of the file ```vlogger/planning_utils/gpt4_utils.py```
### Inference for vlog generation
Run the following command to get the vlog:
```python
python sample_scripts/vlog_read_script_sample.py
```
The generated scripts will be saved in ```results/vlog/$your_story_dir/video```.


#### More Details
You may modify ```configs/with_mask_sample.yaml``` to change the (T+I)2V conditions.

You may modify ```configs/with_mask_ref_sample.yaml``` to change the (T+I+ref)2V conditions.
For example:

```ckpt``` is used to specify a model checkpoint.

```text_prompt``` is used to describe the content of the video.

```input_path``` is used to specify the path to the image.

```ref_path``` is used to specify the path to the reference image.

```save_path``` is used to specify the path to the generated video.


## Results
### (T+Ref)2V Results
<table class="center">
<tr>
  <td style="text-align:center;width: 50%" colspan="1"><b>Reference Image</b></td>
  <td style="text-align:center;width: 50%" colspan="1"><b>Output Video</b></td>
</tr>
<tr>
  <td><img src="examples/TR2V/image/Egyptian_Pyramids.png" width="250">
      <br>
<!--       <div class="text" style=" text-align:center;">
        Scene Reference
      </div> -->
      <p align="center">Scene Reference</p>
  </td>
  <td>
      <img src="examples/TR2V/video/Fireworks_explode_over_the_pyramids.gif" width="400">
      <br>
<!--       <div class="text" style=" text-align:center;">
        Fireworks explode over the pyramids.
      </div> -->
          <p align="center">Fireworks explode over the pyramids.</p>
  </td>
</tr>

<tr>
  <td><img src="examples/TR2V/image/Great_Wall.png" width="250">
      <br>
<!--       <div class="text" style=" text-align:center;">
        Scene Reference
      </div> -->
      <p align="center">Scene Reference</p>
  </td>
  <td>
      <img src="examples/TR2V/video/The_Great_Wall_burning_with_raging_fire.gif" width="400">
      <br>
<!--       <div class="text" style=" text-align:center;">
        The Great Wall burning with raging fire.
      </div> -->
          <p align="center">The Great Wall burning with raging fire.</p>
  </td>
</tr>

<tr>
  <td><img src="examples/TR2V/image/a_green_cat.png" width="250">
      <br>
<!--       <div class="text" style=" text-align:center;">
        Object Reference
      </div> -->
      <p align="center">Object Reference</p>
  </td>
  <td>
      <img src="examples/TR2V/video/A_cat_is_running_on_the_beach.gif" width="400">
      <br>
<!--       <div class="text" style=" text-align:center;">
        A cat is running on the beach.
      </div> -->
          <p align="center">A cat is running on the beach.</p>
  </td>
</tr>

</table>

### (T+I)2V Results
<table class="center">
<tr>
  <td style="text-align:center;width: 50%" colspan="1"><b>Input Image</b></td>
  <td style="text-align:center;width: 50%" colspan="1"><b>Output Video</b></td>
</tr>
<tr>
  <td><img src="input/i2v/Underwater_environment_cosmetic_bottles.png" width="400"></td>
  <td>
      <img src="examples/TI2V/Underwater_environment_cosmetic_bottles.gif" width="400">
      <br>
<!--       <div class="text" style=" text-align:center;">
        Underwater environment cosmetic bottles.
      </div> -->
          <p align="center">Underwater environment cosmetic bottles.</p>
  </td>
</tr>

<tr>
  <td><img src="input/i2v/A_big_drop_of_water_falls_on_a_rose_petal.png" width="400"></td>
  <td>
      <img src="examples/TI2V/A_big_drop_of_water_falls_on_a_rose_petal.gif" width="400">
      <br>
<!--       <div class="text" style=" text-align:center;">
        A big drop of water falls on a rose petal.
      </div> -->
          <p align="center">A big drop of water falls on a rose petal.</p>
  </td>
</tr>

<tr>
  <td><img src="input/i2v/A_fish_swims_past_an_oriental_woman.png" width="400"></td>
  <td>
      <img src="examples/TI2V/A_fish_swims_past_an_oriental_woman.gif" width="400">
      <br>
<!--       <div class="text" style=" text-align:center;">
        A fish swims past an oriental woman.
      </div> -->
          <p align="center">A fish swims past an oriental woman.</p>
  </td>
</tr>

<tr>
  <td><img src="input/i2v/Cinematic_photograph_View_of_piloting_aaero.png" width="400"></td>
  <td>
      <img src="examples/TI2V/Cinematic_photograph_View_of_piloting_aaero.gif" width="400">
      <br>
<!--       <div class="text" style=" text-align:center;">
        Cinematic photograph. View of piloting aaero.
      </div> -->
          <p align="center">Cinematic photograph. View of piloting aaero.</p>
  </td>
</tr>

<tr>
  <td><img src="input/i2v/Planet_hits_earth.png" width="400"></td>
  <td>
      <img src="examples/TI2V/Planet_hits_earth.gif" width="400">
      <br>
<!--       <div class="text" style=" text-align:center;">
        Planet hits earth.
      </div> -->
          <p align="center">Planet hits earth.</p>
  </td>
</tr>
</table>


### T2V Results
<table>
<tr>
  <td style="text-align:center;width: 66%" colspan="2"><b>Output Video</b></td>
</tr>
<tr>
  <td>
      <img src="examples/T2V/A_deer_looks_at_the_sunset_behind_him.gif"/>
      <br>
<!--       <div class="text" style=" text-align:center;">
        A deer looks at the sunset behind him.
      </div> -->
          <p align="center">A deer looks at the sunset behind him.</p>
  </td>
  <td>
      <img src="examples/T2V/A_duck_is_teaching_math_to_another_duck.gif"/>
      <br>
<!--       <div class="text" style=" text-align:center;">
        A duck is teaching math to another duck.
      </div> -->
          <p align="center">A duck is teaching math to another duck.</p>
  </td>
</tr>
<tr>
  <td>
      <img src="examples/T2V/Bezos_explores_tropical_rainforest.gif"/>
      <br>
<!--       <div class="text" style=" text-align:center;">
        Bezos explores tropical rainforest.
      </div> -->
          <p align="center">Bezos explores tropical rainforest.</p>
  </td>
  <td>
      <img src="examples/T2V/Light_blue_water_lapping_on_the_beach.gif"/>
      <br>
<!--       <div class="text" style=" text-align:center;">
        Light blue water lapping on the beach.
      </div> -->
          <p align="center">Light blue water lapping on the beach.</p>
  </td>
</tr>

</table>

## BibTeX
```bibtex
@article{zhuang2024vlogger,
title={Vlogger: Make Your Dream A Vlog},
author={Zhuang, Shaobin and Li, Kunchang and Chen, Xinyuan and Wang, Yaohui and Liu, Ziwei and Qiao, Yu and Wang, Yali},
journal={arXiv preprint arXiv:2401.09414},
year={2024}
}
```

```bibtex
@article{chen2023seine,
title={SEINE: Short-to-Long Video Diffusion Model for Generative Transition and Prediction},
author={Chen, Xinyuan and Wang, Yaohui and Zhang, Lingjun and Zhuang, Shaobin and Ma, Xin and Yu, Jiashuo and Wang, Yali and Lin, Dahua and Qiao, Yu and Liu, Ziwei},
journal={arXiv preprint arXiv:2310.20700},
year={2023}
}
```

```bibtex
@article{wang2023lavie,
  title={LAVIE: High-Quality Video Generation with Cascaded Latent Diffusion Models},
  author={Wang, Yaohui and Chen, Xinyuan and Ma, Xin and Zhou, Shangchen and Huang, Ziqi and Wang, Yi and Yang, Ceyuan and He, Yinan and Yu, Jiashuo and Yang, Peiqing and others},
  journal={arXiv preprint arXiv:2309.15103},
  year={2023}
}
```

## Disclaimer
We disclaim responsibility for user-generated content. The model was not trained to realistically represent people or events, so using it to generate such content is beyond the model's capabilities. It is prohibited for pornographic, violent and bloody content generation, and to generate content that is demeaning or harmful to people or their environment, culture, religion, etc. Users are solely liable for their actions. The project contributors are not legally affiliated with, nor accountable for users' behaviors. Use the generative model responsibly, adhering to ethical and legal standards.

## Contact Us
**Shaobin Zhuang**: [[email protected]](mailto:[email protected])

**Kunchang Li**: [[email protected]](mailto:[email protected])

**Xinyuan Chen**: [[email protected]](mailto:[email protected])

**Yaohui Wang**: [[email protected]](mailto:[email protected])  

## Acknowledgements
The code is built upon [SEINE](https://github.com/Vchitect/SEINE), [LaVie](https://github.com/Vchitect/LaVie), [diffusers](https://github.com/huggingface/diffusers) and [Stable Diffusion](https://github.com/CompVis/stable-diffusion), we thank all the contributors for open-sourcing. 


## License
The code is licensed under Apache-2.0, model weights are fully open for academic research and also allow **free** commercial usage. To apply for a commercial license, please contact [email protected].
=======