VenkatNDivi77
commited on
Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,1125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: BeastyZ/e5-R-mistral-7b
|
3 |
+
datasets:
|
4 |
+
- BeastyZ/E5-R
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
library_name: transformers
|
8 |
+
license: apache-2.0
|
9 |
+
tags:
|
10 |
+
- mteb
|
11 |
+
- llama-cpp
|
12 |
+
- gguf-my-repo
|
13 |
+
model-index:
|
14 |
+
- name: e5-R-mistral-7b
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
type: Retrieval
|
18 |
+
dataset:
|
19 |
+
name: MTEB ArguAna
|
20 |
+
type: mteb/arguana
|
21 |
+
config: default
|
22 |
+
split: test
|
23 |
+
revision: None
|
24 |
+
metrics:
|
25 |
+
- type: map_at_1
|
26 |
+
value: 33.57
|
27 |
+
- type: map_at_10
|
28 |
+
value: 49.952000000000005
|
29 |
+
- type: map_at_100
|
30 |
+
value: 50.673
|
31 |
+
- type: map_at_1000
|
32 |
+
value: 50.674
|
33 |
+
- type: map_at_3
|
34 |
+
value: 44.915
|
35 |
+
- type: map_at_5
|
36 |
+
value: 47.876999999999995
|
37 |
+
- type: mrr_at_1
|
38 |
+
value: 34.211000000000006
|
39 |
+
- type: mrr_at_10
|
40 |
+
value: 50.19
|
41 |
+
- type: mrr_at_100
|
42 |
+
value: 50.905
|
43 |
+
- type: mrr_at_1000
|
44 |
+
value: 50.906
|
45 |
+
- type: mrr_at_3
|
46 |
+
value: 45.128
|
47 |
+
- type: mrr_at_5
|
48 |
+
value: 48.097
|
49 |
+
- type: ndcg_at_1
|
50 |
+
value: 33.57
|
51 |
+
- type: ndcg_at_10
|
52 |
+
value: 58.994
|
53 |
+
- type: ndcg_at_100
|
54 |
+
value: 61.806000000000004
|
55 |
+
- type: ndcg_at_1000
|
56 |
+
value: 61.824999999999996
|
57 |
+
- type: ndcg_at_3
|
58 |
+
value: 48.681000000000004
|
59 |
+
- type: ndcg_at_5
|
60 |
+
value: 54.001
|
61 |
+
- type: precision_at_1
|
62 |
+
value: 33.57
|
63 |
+
- type: precision_at_10
|
64 |
+
value: 8.784
|
65 |
+
- type: precision_at_100
|
66 |
+
value: 0.9950000000000001
|
67 |
+
- type: precision_at_1000
|
68 |
+
value: 0.1
|
69 |
+
- type: precision_at_3
|
70 |
+
value: 19.867
|
71 |
+
- type: precision_at_5
|
72 |
+
value: 14.495
|
73 |
+
- type: recall_at_1
|
74 |
+
value: 33.57
|
75 |
+
- type: recall_at_10
|
76 |
+
value: 87.83800000000001
|
77 |
+
- type: recall_at_100
|
78 |
+
value: 99.502
|
79 |
+
- type: recall_at_1000
|
80 |
+
value: 99.644
|
81 |
+
- type: recall_at_3
|
82 |
+
value: 59.602
|
83 |
+
- type: recall_at_5
|
84 |
+
value: 72.475
|
85 |
+
- type: main_score
|
86 |
+
value: 58.994
|
87 |
+
- task:
|
88 |
+
type: Retrieval
|
89 |
+
dataset:
|
90 |
+
name: MTEB CQADupstackRetrieval
|
91 |
+
type: mteb/cqadupstack
|
92 |
+
config: default
|
93 |
+
split: test
|
94 |
+
revision: None
|
95 |
+
metrics:
|
96 |
+
- type: map_at_1
|
97 |
+
value: 24.75
|
98 |
+
- type: map_at_10
|
99 |
+
value: 34.025
|
100 |
+
- type: map_at_100
|
101 |
+
value: 35.126000000000005
|
102 |
+
- type: map_at_1000
|
103 |
+
value: 35.219
|
104 |
+
- type: map_at_3
|
105 |
+
value: 31.607000000000003
|
106 |
+
- type: map_at_5
|
107 |
+
value: 32.962
|
108 |
+
- type: mrr_at_1
|
109 |
+
value: 27.357
|
110 |
+
- type: mrr_at_10
|
111 |
+
value: 36.370999999999995
|
112 |
+
- type: mrr_at_100
|
113 |
+
value: 37.364000000000004
|
114 |
+
- type: mrr_at_1000
|
115 |
+
value: 37.423
|
116 |
+
- type: mrr_at_3
|
117 |
+
value: 34.288000000000004
|
118 |
+
- type: mrr_at_5
|
119 |
+
value: 35.434
|
120 |
+
- type: ndcg_at_1
|
121 |
+
value: 27.357
|
122 |
+
- type: ndcg_at_10
|
123 |
+
value: 46.593999999999994
|
124 |
+
- type: ndcg_at_100
|
125 |
+
value: 44.317
|
126 |
+
- type: ndcg_at_1000
|
127 |
+
value: 46.475
|
128 |
+
- type: ndcg_at_3
|
129 |
+
value: 34.473
|
130 |
+
- type: ndcg_at_5
|
131 |
+
value: 36.561
|
132 |
+
- type: precision_at_1
|
133 |
+
value: 27.357
|
134 |
+
- type: precision_at_10
|
135 |
+
value: 6.081
|
136 |
+
- type: precision_at_100
|
137 |
+
value: 0.9299999999999999
|
138 |
+
- type: precision_at_1000
|
139 |
+
value: 0.124
|
140 |
+
- type: precision_at_3
|
141 |
+
value: 14.911
|
142 |
+
- type: precision_at_5
|
143 |
+
value: 10.24
|
144 |
+
- type: recall_at_1
|
145 |
+
value: 24.75
|
146 |
+
- type: recall_at_10
|
147 |
+
value: 51.856
|
148 |
+
- type: recall_at_100
|
149 |
+
value: 76.44300000000001
|
150 |
+
- type: recall_at_1000
|
151 |
+
value: 92.078
|
152 |
+
- type: recall_at_3
|
153 |
+
value: 39.427
|
154 |
+
- type: recall_at_5
|
155 |
+
value: 44.639
|
156 |
+
- type: main_score
|
157 |
+
value: 46.593999999999994
|
158 |
+
- task:
|
159 |
+
type: Retrieval
|
160 |
+
dataset:
|
161 |
+
name: MTEB ClimateFEVER
|
162 |
+
type: mteb/climate-fever
|
163 |
+
config: default
|
164 |
+
split: test
|
165 |
+
revision: None
|
166 |
+
metrics:
|
167 |
+
- type: map_at_1
|
168 |
+
value: 16.436
|
169 |
+
- type: map_at_10
|
170 |
+
value: 29.693
|
171 |
+
- type: map_at_100
|
172 |
+
value: 32.179
|
173 |
+
- type: map_at_1000
|
174 |
+
value: 32.353
|
175 |
+
- type: map_at_3
|
176 |
+
value: 24.556
|
177 |
+
- type: map_at_5
|
178 |
+
value: 27.105
|
179 |
+
- type: mrr_at_1
|
180 |
+
value: 37.524
|
181 |
+
- type: mrr_at_10
|
182 |
+
value: 51.475
|
183 |
+
- type: mrr_at_100
|
184 |
+
value: 52.107000000000006
|
185 |
+
- type: mrr_at_1000
|
186 |
+
value: 52.123
|
187 |
+
- type: mrr_at_3
|
188 |
+
value: 48.35
|
189 |
+
- type: mrr_at_5
|
190 |
+
value: 50.249
|
191 |
+
- type: ndcg_at_1
|
192 |
+
value: 37.524
|
193 |
+
- type: ndcg_at_10
|
194 |
+
value: 40.258
|
195 |
+
- type: ndcg_at_100
|
196 |
+
value: 48.364000000000004
|
197 |
+
- type: ndcg_at_1000
|
198 |
+
value: 51.031000000000006
|
199 |
+
- type: ndcg_at_3
|
200 |
+
value: 33.359
|
201 |
+
- type: ndcg_at_5
|
202 |
+
value: 35.573
|
203 |
+
- type: precision_at_1
|
204 |
+
value: 37.524
|
205 |
+
- type: precision_at_10
|
206 |
+
value: 12.886000000000001
|
207 |
+
- type: precision_at_100
|
208 |
+
value: 2.169
|
209 |
+
- type: precision_at_1000
|
210 |
+
value: 0.268
|
211 |
+
- type: precision_at_3
|
212 |
+
value: 25.624000000000002
|
213 |
+
- type: precision_at_5
|
214 |
+
value: 19.453
|
215 |
+
- type: recall_at_1
|
216 |
+
value: 16.436
|
217 |
+
- type: recall_at_10
|
218 |
+
value: 47.77
|
219 |
+
- type: recall_at_100
|
220 |
+
value: 74.762
|
221 |
+
- type: recall_at_1000
|
222 |
+
value: 89.316
|
223 |
+
- type: recall_at_3
|
224 |
+
value: 30.508000000000003
|
225 |
+
- type: recall_at_5
|
226 |
+
value: 37.346000000000004
|
227 |
+
- type: main_score
|
228 |
+
value: 40.258
|
229 |
+
- task:
|
230 |
+
type: Retrieval
|
231 |
+
dataset:
|
232 |
+
name: MTEB DBPedia
|
233 |
+
type: mteb/dbpedia
|
234 |
+
config: default
|
235 |
+
split: test
|
236 |
+
revision: None
|
237 |
+
metrics:
|
238 |
+
- type: map_at_1
|
239 |
+
value: 10.147
|
240 |
+
- type: map_at_10
|
241 |
+
value: 24.631
|
242 |
+
- type: map_at_100
|
243 |
+
value: 35.657
|
244 |
+
- type: map_at_1000
|
245 |
+
value: 37.824999999999996
|
246 |
+
- type: map_at_3
|
247 |
+
value: 16.423
|
248 |
+
- type: map_at_5
|
249 |
+
value: 19.666
|
250 |
+
- type: mrr_at_1
|
251 |
+
value: 76.5
|
252 |
+
- type: mrr_at_10
|
253 |
+
value: 82.793
|
254 |
+
- type: mrr_at_100
|
255 |
+
value: 83.015
|
256 |
+
- type: mrr_at_1000
|
257 |
+
value: 83.021
|
258 |
+
- type: mrr_at_3
|
259 |
+
value: 81.75
|
260 |
+
- type: mrr_at_5
|
261 |
+
value: 82.375
|
262 |
+
- type: ndcg_at_1
|
263 |
+
value: 64.75
|
264 |
+
- type: ndcg_at_10
|
265 |
+
value: 51.031000000000006
|
266 |
+
- type: ndcg_at_100
|
267 |
+
value: 56.005
|
268 |
+
- type: ndcg_at_1000
|
269 |
+
value: 63.068000000000005
|
270 |
+
- type: ndcg_at_3
|
271 |
+
value: 54.571999999999996
|
272 |
+
- type: ndcg_at_5
|
273 |
+
value: 52.66499999999999
|
274 |
+
- type: precision_at_1
|
275 |
+
value: 76.5
|
276 |
+
- type: precision_at_10
|
277 |
+
value: 42.15
|
278 |
+
- type: precision_at_100
|
279 |
+
value: 13.22
|
280 |
+
- type: precision_at_1000
|
281 |
+
value: 2.5989999999999998
|
282 |
+
- type: precision_at_3
|
283 |
+
value: 58.416999999999994
|
284 |
+
- type: precision_at_5
|
285 |
+
value: 52.2
|
286 |
+
- type: recall_at_1
|
287 |
+
value: 10.147
|
288 |
+
- type: recall_at_10
|
289 |
+
value: 30.786
|
290 |
+
- type: recall_at_100
|
291 |
+
value: 62.873000000000005
|
292 |
+
- type: recall_at_1000
|
293 |
+
value: 85.358
|
294 |
+
- type: recall_at_3
|
295 |
+
value: 17.665
|
296 |
+
- type: recall_at_5
|
297 |
+
value: 22.088
|
298 |
+
- type: main_score
|
299 |
+
value: 51.031000000000006
|
300 |
+
- task:
|
301 |
+
type: Retrieval
|
302 |
+
dataset:
|
303 |
+
name: MTEB FEVER
|
304 |
+
type: mteb/fever
|
305 |
+
config: default
|
306 |
+
split: test
|
307 |
+
revision: None
|
308 |
+
metrics:
|
309 |
+
- type: map_at_1
|
310 |
+
value: 78.52900000000001
|
311 |
+
- type: map_at_10
|
312 |
+
value: 87.24199999999999
|
313 |
+
- type: map_at_100
|
314 |
+
value: 87.446
|
315 |
+
- type: map_at_1000
|
316 |
+
value: 87.457
|
317 |
+
- type: map_at_3
|
318 |
+
value: 86.193
|
319 |
+
- type: map_at_5
|
320 |
+
value: 86.898
|
321 |
+
- type: mrr_at_1
|
322 |
+
value: 84.518
|
323 |
+
- type: mrr_at_10
|
324 |
+
value: 90.686
|
325 |
+
- type: mrr_at_100
|
326 |
+
value: 90.73
|
327 |
+
- type: mrr_at_1000
|
328 |
+
value: 90.731
|
329 |
+
- type: mrr_at_3
|
330 |
+
value: 90.227
|
331 |
+
- type: mrr_at_5
|
332 |
+
value: 90.575
|
333 |
+
- type: ndcg_at_1
|
334 |
+
value: 84.518
|
335 |
+
- type: ndcg_at_10
|
336 |
+
value: 90.324
|
337 |
+
- type: ndcg_at_100
|
338 |
+
value: 90.96300000000001
|
339 |
+
- type: ndcg_at_1000
|
340 |
+
value: 91.134
|
341 |
+
- type: ndcg_at_3
|
342 |
+
value: 88.937
|
343 |
+
- type: ndcg_at_5
|
344 |
+
value: 89.788
|
345 |
+
- type: precision_at_1
|
346 |
+
value: 84.518
|
347 |
+
- type: precision_at_10
|
348 |
+
value: 10.872
|
349 |
+
- type: precision_at_100
|
350 |
+
value: 1.1440000000000001
|
351 |
+
- type: precision_at_1000
|
352 |
+
value: 0.117
|
353 |
+
- type: precision_at_3
|
354 |
+
value: 34.108
|
355 |
+
- type: precision_at_5
|
356 |
+
value: 21.154999999999998
|
357 |
+
- type: recall_at_1
|
358 |
+
value: 78.52900000000001
|
359 |
+
- type: recall_at_10
|
360 |
+
value: 96.123
|
361 |
+
- type: recall_at_100
|
362 |
+
value: 98.503
|
363 |
+
- type: recall_at_1000
|
364 |
+
value: 99.518
|
365 |
+
- type: recall_at_3
|
366 |
+
value: 92.444
|
367 |
+
- type: recall_at_5
|
368 |
+
value: 94.609
|
369 |
+
- type: main_score
|
370 |
+
value: 90.324
|
371 |
+
- task:
|
372 |
+
type: Retrieval
|
373 |
+
dataset:
|
374 |
+
name: MTEB FiQA2018
|
375 |
+
type: mteb/fiqa
|
376 |
+
config: default
|
377 |
+
split: test
|
378 |
+
revision: None
|
379 |
+
metrics:
|
380 |
+
- type: map_at_1
|
381 |
+
value: 29.38
|
382 |
+
- type: map_at_10
|
383 |
+
value: 50.28
|
384 |
+
- type: map_at_100
|
385 |
+
value: 52.532999999999994
|
386 |
+
- type: map_at_1000
|
387 |
+
value: 52.641000000000005
|
388 |
+
- type: map_at_3
|
389 |
+
value: 43.556
|
390 |
+
- type: map_at_5
|
391 |
+
value: 47.617
|
392 |
+
- type: mrr_at_1
|
393 |
+
value: 56.79
|
394 |
+
- type: mrr_at_10
|
395 |
+
value: 65.666
|
396 |
+
- type: mrr_at_100
|
397 |
+
value: 66.211
|
398 |
+
- type: mrr_at_1000
|
399 |
+
value: 66.226
|
400 |
+
- type: mrr_at_3
|
401 |
+
value: 63.452
|
402 |
+
- type: mrr_at_5
|
403 |
+
value: 64.895
|
404 |
+
- type: ndcg_at_1
|
405 |
+
value: 56.79
|
406 |
+
- type: ndcg_at_10
|
407 |
+
value: 58.68
|
408 |
+
- type: ndcg_at_100
|
409 |
+
value: 65.22
|
410 |
+
- type: ndcg_at_1000
|
411 |
+
value: 66.645
|
412 |
+
- type: ndcg_at_3
|
413 |
+
value: 53.981
|
414 |
+
- type: ndcg_at_5
|
415 |
+
value: 55.95
|
416 |
+
- type: precision_at_1
|
417 |
+
value: 56.79
|
418 |
+
- type: precision_at_10
|
419 |
+
value: 16.311999999999998
|
420 |
+
- type: precision_at_100
|
421 |
+
value: 2.316
|
422 |
+
- type: precision_at_1000
|
423 |
+
value: 0.258
|
424 |
+
- type: precision_at_3
|
425 |
+
value: 36.214
|
426 |
+
- type: precision_at_5
|
427 |
+
value: 27.067999999999998
|
428 |
+
- type: recall_at_1
|
429 |
+
value: 29.38
|
430 |
+
- type: recall_at_10
|
431 |
+
value: 66.503
|
432 |
+
- type: recall_at_100
|
433 |
+
value: 89.885
|
434 |
+
- type: recall_at_1000
|
435 |
+
value: 97.954
|
436 |
+
- type: recall_at_3
|
437 |
+
value: 48.866
|
438 |
+
- type: recall_at_5
|
439 |
+
value: 57.60999999999999
|
440 |
+
- type: main_score
|
441 |
+
value: 58.68
|
442 |
+
- task:
|
443 |
+
type: Retrieval
|
444 |
+
dataset:
|
445 |
+
name: MTEB HotpotQA
|
446 |
+
type: mteb/hotpotqa
|
447 |
+
config: default
|
448 |
+
split: test
|
449 |
+
revision: None
|
450 |
+
metrics:
|
451 |
+
- type: map_at_1
|
452 |
+
value: 42.134
|
453 |
+
- type: map_at_10
|
454 |
+
value: 73.412
|
455 |
+
- type: map_at_100
|
456 |
+
value: 74.144
|
457 |
+
- type: map_at_1000
|
458 |
+
value: 74.181
|
459 |
+
- type: map_at_3
|
460 |
+
value: 70.016
|
461 |
+
- type: map_at_5
|
462 |
+
value: 72.174
|
463 |
+
- type: mrr_at_1
|
464 |
+
value: 84.267
|
465 |
+
- type: mrr_at_10
|
466 |
+
value: 89.18599999999999
|
467 |
+
- type: mrr_at_100
|
468 |
+
value: 89.29599999999999
|
469 |
+
- type: mrr_at_1000
|
470 |
+
value: 89.298
|
471 |
+
- type: mrr_at_3
|
472 |
+
value: 88.616
|
473 |
+
- type: mrr_at_5
|
474 |
+
value: 88.957
|
475 |
+
- type: ndcg_at_1
|
476 |
+
value: 84.267
|
477 |
+
- type: ndcg_at_10
|
478 |
+
value: 80.164
|
479 |
+
- type: ndcg_at_100
|
480 |
+
value: 82.52199999999999
|
481 |
+
- type: ndcg_at_1000
|
482 |
+
value: 83.176
|
483 |
+
- type: ndcg_at_3
|
484 |
+
value: 75.616
|
485 |
+
- type: ndcg_at_5
|
486 |
+
value: 78.184
|
487 |
+
- type: precision_at_1
|
488 |
+
value: 84.267
|
489 |
+
- type: precision_at_10
|
490 |
+
value: 16.916
|
491 |
+
- type: precision_at_100
|
492 |
+
value: 1.872
|
493 |
+
- type: precision_at_1000
|
494 |
+
value: 0.196
|
495 |
+
- type: precision_at_3
|
496 |
+
value: 49.71
|
497 |
+
- type: precision_at_5
|
498 |
+
value: 31.854
|
499 |
+
- type: recall_at_1
|
500 |
+
value: 42.134
|
501 |
+
- type: recall_at_10
|
502 |
+
value: 84.578
|
503 |
+
- type: recall_at_100
|
504 |
+
value: 93.606
|
505 |
+
- type: recall_at_1000
|
506 |
+
value: 97.86
|
507 |
+
- type: recall_at_3
|
508 |
+
value: 74.564
|
509 |
+
- type: recall_at_5
|
510 |
+
value: 79.635
|
511 |
+
- type: main_score
|
512 |
+
value: 80.164
|
513 |
+
- task:
|
514 |
+
type: Retrieval
|
515 |
+
dataset:
|
516 |
+
name: MTEB MSMARCO
|
517 |
+
type: mteb/msmarco
|
518 |
+
config: default
|
519 |
+
split: dev
|
520 |
+
revision: None
|
521 |
+
metrics:
|
522 |
+
- type: map_at_1
|
523 |
+
value: 22.276
|
524 |
+
- type: map_at_10
|
525 |
+
value: 35.493
|
526 |
+
- type: map_at_100
|
527 |
+
value: 36.656
|
528 |
+
- type: map_at_1000
|
529 |
+
value: 36.699
|
530 |
+
- type: map_at_3
|
531 |
+
value: 31.320999999999998
|
532 |
+
- type: map_at_5
|
533 |
+
value: 33.772999999999996
|
534 |
+
- type: mrr_at_1
|
535 |
+
value: 22.966
|
536 |
+
- type: mrr_at_10
|
537 |
+
value: 36.074
|
538 |
+
- type: mrr_at_100
|
539 |
+
value: 37.183
|
540 |
+
- type: mrr_at_1000
|
541 |
+
value: 37.219
|
542 |
+
- type: mrr_at_3
|
543 |
+
value: 31.984
|
544 |
+
- type: mrr_at_5
|
545 |
+
value: 34.419
|
546 |
+
- type: ndcg_at_1
|
547 |
+
value: 22.966
|
548 |
+
- type: ndcg_at_10
|
549 |
+
value: 42.895
|
550 |
+
- type: ndcg_at_100
|
551 |
+
value: 48.453
|
552 |
+
- type: ndcg_at_1000
|
553 |
+
value: 49.464999999999996
|
554 |
+
- type: ndcg_at_3
|
555 |
+
value: 34.410000000000004
|
556 |
+
- type: ndcg_at_5
|
557 |
+
value: 38.78
|
558 |
+
- type: precision_at_1
|
559 |
+
value: 22.966
|
560 |
+
- type: precision_at_10
|
561 |
+
value: 6.88
|
562 |
+
- type: precision_at_100
|
563 |
+
value: 0.966
|
564 |
+
- type: precision_at_1000
|
565 |
+
value: 0.105
|
566 |
+
- type: precision_at_3
|
567 |
+
value: 14.785
|
568 |
+
- type: precision_at_5
|
569 |
+
value: 11.074
|
570 |
+
- type: recall_at_1
|
571 |
+
value: 22.276
|
572 |
+
- type: recall_at_10
|
573 |
+
value: 65.756
|
574 |
+
- type: recall_at_100
|
575 |
+
value: 91.34100000000001
|
576 |
+
- type: recall_at_1000
|
577 |
+
value: 98.957
|
578 |
+
- type: recall_at_3
|
579 |
+
value: 42.67
|
580 |
+
- type: recall_at_5
|
581 |
+
value: 53.161
|
582 |
+
- type: main_score
|
583 |
+
value: 42.895
|
584 |
+
- task:
|
585 |
+
type: Retrieval
|
586 |
+
dataset:
|
587 |
+
name: MTEB NFCorpus
|
588 |
+
type: mteb/nfcorpus
|
589 |
+
config: default
|
590 |
+
split: test
|
591 |
+
revision: None
|
592 |
+
metrics:
|
593 |
+
- type: map_at_1
|
594 |
+
value: 7.188999999999999
|
595 |
+
- type: map_at_10
|
596 |
+
value: 16.176
|
597 |
+
- type: map_at_100
|
598 |
+
value: 20.504
|
599 |
+
- type: map_at_1000
|
600 |
+
value: 22.203999999999997
|
601 |
+
- type: map_at_3
|
602 |
+
value: 11.766
|
603 |
+
- type: map_at_5
|
604 |
+
value: 13.655999999999999
|
605 |
+
- type: mrr_at_1
|
606 |
+
value: 55.418
|
607 |
+
- type: mrr_at_10
|
608 |
+
value: 62.791
|
609 |
+
- type: mrr_at_100
|
610 |
+
value: 63.339
|
611 |
+
- type: mrr_at_1000
|
612 |
+
value: 63.369
|
613 |
+
- type: mrr_at_3
|
614 |
+
value: 60.99099999999999
|
615 |
+
- type: mrr_at_5
|
616 |
+
value: 62.059
|
617 |
+
- type: ndcg_at_1
|
618 |
+
value: 53.715
|
619 |
+
- type: ndcg_at_10
|
620 |
+
value: 41.377
|
621 |
+
- type: ndcg_at_100
|
622 |
+
value: 37.999
|
623 |
+
- type: ndcg_at_1000
|
624 |
+
value: 46.726
|
625 |
+
- type: ndcg_at_3
|
626 |
+
value: 47.262
|
627 |
+
- type: ndcg_at_5
|
628 |
+
value: 44.708999999999996
|
629 |
+
- type: precision_at_1
|
630 |
+
value: 55.108000000000004
|
631 |
+
- type: precision_at_10
|
632 |
+
value: 30.154999999999998
|
633 |
+
- type: precision_at_100
|
634 |
+
value: 9.582
|
635 |
+
- type: precision_at_1000
|
636 |
+
value: 2.2720000000000002
|
637 |
+
- type: precision_at_3
|
638 |
+
value: 43.55
|
639 |
+
- type: precision_at_5
|
640 |
+
value: 38.204
|
641 |
+
- type: recall_at_1
|
642 |
+
value: 7.188999999999999
|
643 |
+
- type: recall_at_10
|
644 |
+
value: 20.655
|
645 |
+
- type: recall_at_100
|
646 |
+
value: 38.068000000000005
|
647 |
+
- type: recall_at_1000
|
648 |
+
value: 70.208
|
649 |
+
- type: recall_at_3
|
650 |
+
value: 12.601
|
651 |
+
- type: recall_at_5
|
652 |
+
value: 15.573999999999998
|
653 |
+
- type: main_score
|
654 |
+
value: 41.377
|
655 |
+
- task:
|
656 |
+
type: Retrieval
|
657 |
+
dataset:
|
658 |
+
name: MTEB NQ
|
659 |
+
type: mteb/nq
|
660 |
+
config: default
|
661 |
+
split: test
|
662 |
+
revision: None
|
663 |
+
metrics:
|
664 |
+
- type: map_at_1
|
665 |
+
value: 46.017
|
666 |
+
- type: map_at_10
|
667 |
+
value: 62.910999999999994
|
668 |
+
- type: map_at_100
|
669 |
+
value: 63.526
|
670 |
+
- type: map_at_1000
|
671 |
+
value: 63.536
|
672 |
+
- type: map_at_3
|
673 |
+
value: 59.077999999999996
|
674 |
+
- type: map_at_5
|
675 |
+
value: 61.521
|
676 |
+
- type: mrr_at_1
|
677 |
+
value: 51.68000000000001
|
678 |
+
- type: mrr_at_10
|
679 |
+
value: 65.149
|
680 |
+
- type: mrr_at_100
|
681 |
+
value: 65.542
|
682 |
+
- type: mrr_at_1000
|
683 |
+
value: 65.55
|
684 |
+
- type: mrr_at_3
|
685 |
+
value: 62.49
|
686 |
+
- type: mrr_at_5
|
687 |
+
value: 64.178
|
688 |
+
- type: ndcg_at_1
|
689 |
+
value: 51.651
|
690 |
+
- type: ndcg_at_10
|
691 |
+
value: 69.83500000000001
|
692 |
+
- type: ndcg_at_100
|
693 |
+
value: 72.18
|
694 |
+
- type: ndcg_at_1000
|
695 |
+
value: 72.393
|
696 |
+
- type: ndcg_at_3
|
697 |
+
value: 63.168
|
698 |
+
- type: ndcg_at_5
|
699 |
+
value: 66.958
|
700 |
+
- type: precision_at_1
|
701 |
+
value: 51.651
|
702 |
+
- type: precision_at_10
|
703 |
+
value: 10.626
|
704 |
+
- type: precision_at_100
|
705 |
+
value: 1.195
|
706 |
+
- type: precision_at_1000
|
707 |
+
value: 0.121
|
708 |
+
- type: precision_at_3
|
709 |
+
value: 28.012999999999998
|
710 |
+
- type: precision_at_5
|
711 |
+
value: 19.09
|
712 |
+
- type: recall_at_1
|
713 |
+
value: 46.017
|
714 |
+
- type: recall_at_10
|
715 |
+
value: 88.345
|
716 |
+
- type: recall_at_100
|
717 |
+
value: 98.129
|
718 |
+
- type: recall_at_1000
|
719 |
+
value: 99.696
|
720 |
+
- type: recall_at_3
|
721 |
+
value: 71.531
|
722 |
+
- type: recall_at_5
|
723 |
+
value: 80.108
|
724 |
+
- type: main_score
|
725 |
+
value: 69.83500000000001
|
726 |
+
- task:
|
727 |
+
type: Retrieval
|
728 |
+
dataset:
|
729 |
+
name: MTEB QuoraRetrieval
|
730 |
+
type: mteb/quora
|
731 |
+
config: default
|
732 |
+
split: test
|
733 |
+
revision: None
|
734 |
+
metrics:
|
735 |
+
- type: map_at_1
|
736 |
+
value: 72.473
|
737 |
+
- type: map_at_10
|
738 |
+
value: 86.72800000000001
|
739 |
+
- type: map_at_100
|
740 |
+
value: 87.323
|
741 |
+
- type: map_at_1000
|
742 |
+
value: 87.332
|
743 |
+
- type: map_at_3
|
744 |
+
value: 83.753
|
745 |
+
- type: map_at_5
|
746 |
+
value: 85.627
|
747 |
+
- type: mrr_at_1
|
748 |
+
value: 83.39
|
749 |
+
- type: mrr_at_10
|
750 |
+
value: 89.149
|
751 |
+
- type: mrr_at_100
|
752 |
+
value: 89.228
|
753 |
+
- type: mrr_at_1000
|
754 |
+
value: 89.229
|
755 |
+
- type: mrr_at_3
|
756 |
+
value: 88.335
|
757 |
+
- type: mrr_at_5
|
758 |
+
value: 88.895
|
759 |
+
- type: ndcg_at_1
|
760 |
+
value: 83.39
|
761 |
+
- type: ndcg_at_10
|
762 |
+
value: 90.109
|
763 |
+
- type: ndcg_at_100
|
764 |
+
value: 91.09
|
765 |
+
- type: ndcg_at_1000
|
766 |
+
value: 91.13900000000001
|
767 |
+
- type: ndcg_at_3
|
768 |
+
value: 87.483
|
769 |
+
- type: ndcg_at_5
|
770 |
+
value: 88.942
|
771 |
+
- type: precision_at_1
|
772 |
+
value: 83.39
|
773 |
+
- type: precision_at_10
|
774 |
+
value: 13.711
|
775 |
+
- type: precision_at_100
|
776 |
+
value: 1.549
|
777 |
+
- type: precision_at_1000
|
778 |
+
value: 0.157
|
779 |
+
- type: precision_at_3
|
780 |
+
value: 38.342999999999996
|
781 |
+
- type: precision_at_5
|
782 |
+
value: 25.188
|
783 |
+
- type: recall_at_1
|
784 |
+
value: 72.473
|
785 |
+
- type: recall_at_10
|
786 |
+
value: 96.57
|
787 |
+
- type: recall_at_100
|
788 |
+
value: 99.792
|
789 |
+
- type: recall_at_1000
|
790 |
+
value: 99.99900000000001
|
791 |
+
- type: recall_at_3
|
792 |
+
value: 88.979
|
793 |
+
- type: recall_at_5
|
794 |
+
value: 93.163
|
795 |
+
- type: main_score
|
796 |
+
value: 90.109
|
797 |
+
- task:
|
798 |
+
type: Retrieval
|
799 |
+
dataset:
|
800 |
+
name: MTEB SCIDOCS
|
801 |
+
type: mteb/scidocs
|
802 |
+
config: default
|
803 |
+
split: test
|
804 |
+
revision: None
|
805 |
+
metrics:
|
806 |
+
- type: map_at_1
|
807 |
+
value: 4.598
|
808 |
+
- type: map_at_10
|
809 |
+
value: 11.405999999999999
|
810 |
+
- type: map_at_100
|
811 |
+
value: 13.447999999999999
|
812 |
+
- type: map_at_1000
|
813 |
+
value: 13.758999999999999
|
814 |
+
- type: map_at_3
|
815 |
+
value: 8.332
|
816 |
+
- type: map_at_5
|
817 |
+
value: 9.709
|
818 |
+
- type: mrr_at_1
|
819 |
+
value: 22.6
|
820 |
+
- type: mrr_at_10
|
821 |
+
value: 32.978
|
822 |
+
- type: mrr_at_100
|
823 |
+
value: 34.149
|
824 |
+
- type: mrr_at_1000
|
825 |
+
value: 34.213
|
826 |
+
- type: mrr_at_3
|
827 |
+
value: 29.7
|
828 |
+
- type: mrr_at_5
|
829 |
+
value: 31.485000000000003
|
830 |
+
- type: ndcg_at_1
|
831 |
+
value: 22.6
|
832 |
+
- type: ndcg_at_10
|
833 |
+
value: 19.259999999999998
|
834 |
+
- type: ndcg_at_100
|
835 |
+
value: 27.21
|
836 |
+
- type: ndcg_at_1000
|
837 |
+
value: 32.7
|
838 |
+
- type: ndcg_at_3
|
839 |
+
value: 18.445
|
840 |
+
- type: ndcg_at_5
|
841 |
+
value: 15.812000000000001
|
842 |
+
- type: precision_at_1
|
843 |
+
value: 22.6
|
844 |
+
- type: precision_at_10
|
845 |
+
value: 9.959999999999999
|
846 |
+
- type: precision_at_100
|
847 |
+
value: 2.139
|
848 |
+
- type: precision_at_1000
|
849 |
+
value: 0.345
|
850 |
+
- type: precision_at_3
|
851 |
+
value: 17.299999999999997
|
852 |
+
- type: precision_at_5
|
853 |
+
value: 13.719999999999999
|
854 |
+
- type: recall_at_1
|
855 |
+
value: 4.598
|
856 |
+
- type: recall_at_10
|
857 |
+
value: 20.186999999999998
|
858 |
+
- type: recall_at_100
|
859 |
+
value: 43.362
|
860 |
+
- type: recall_at_1000
|
861 |
+
value: 70.11800000000001
|
862 |
+
- type: recall_at_3
|
863 |
+
value: 10.543
|
864 |
+
- type: recall_at_5
|
865 |
+
value: 13.923
|
866 |
+
- type: main_score
|
867 |
+
value: 19.259999999999998
|
868 |
+
- task:
|
869 |
+
type: Retrieval
|
870 |
+
dataset:
|
871 |
+
name: MTEB SciFact
|
872 |
+
type: mteb/scifact
|
873 |
+
config: default
|
874 |
+
split: test
|
875 |
+
revision: None
|
876 |
+
metrics:
|
877 |
+
- type: map_at_1
|
878 |
+
value: 65.467
|
879 |
+
- type: map_at_10
|
880 |
+
value: 74.935
|
881 |
+
- type: map_at_100
|
882 |
+
value: 75.395
|
883 |
+
- type: map_at_1000
|
884 |
+
value: 75.412
|
885 |
+
- type: map_at_3
|
886 |
+
value: 72.436
|
887 |
+
- type: map_at_5
|
888 |
+
value: 73.978
|
889 |
+
- type: mrr_at_1
|
890 |
+
value: 68.667
|
891 |
+
- type: mrr_at_10
|
892 |
+
value: 76.236
|
893 |
+
- type: mrr_at_100
|
894 |
+
value: 76.537
|
895 |
+
- type: mrr_at_1000
|
896 |
+
value: 76.55499999999999
|
897 |
+
- type: mrr_at_3
|
898 |
+
value: 74.722
|
899 |
+
- type: mrr_at_5
|
900 |
+
value: 75.639
|
901 |
+
- type: ndcg_at_1
|
902 |
+
value: 68.667
|
903 |
+
- type: ndcg_at_10
|
904 |
+
value: 78.92099999999999
|
905 |
+
- type: ndcg_at_100
|
906 |
+
value: 80.645
|
907 |
+
- type: ndcg_at_1000
|
908 |
+
value: 81.045
|
909 |
+
- type: ndcg_at_3
|
910 |
+
value: 75.19500000000001
|
911 |
+
- type: ndcg_at_5
|
912 |
+
value: 77.114
|
913 |
+
- type: precision_at_1
|
914 |
+
value: 68.667
|
915 |
+
- type: precision_at_10
|
916 |
+
value: 10.133000000000001
|
917 |
+
- type: precision_at_100
|
918 |
+
value: 1.0999999999999999
|
919 |
+
- type: precision_at_1000
|
920 |
+
value: 0.11299999999999999
|
921 |
+
- type: precision_at_3
|
922 |
+
value: 28.889
|
923 |
+
- type: precision_at_5
|
924 |
+
value: 18.8
|
925 |
+
- type: recall_at_1
|
926 |
+
value: 65.467
|
927 |
+
- type: recall_at_10
|
928 |
+
value: 89.517
|
929 |
+
- type: recall_at_100
|
930 |
+
value: 97
|
931 |
+
- type: recall_at_1000
|
932 |
+
value: 100
|
933 |
+
- type: recall_at_3
|
934 |
+
value: 79.72200000000001
|
935 |
+
- type: recall_at_5
|
936 |
+
value: 84.511
|
937 |
+
- type: main_score
|
938 |
+
value: 78.92099999999999
|
939 |
+
- task:
|
940 |
+
type: Retrieval
|
941 |
+
dataset:
|
942 |
+
name: MTEB TRECCOVID
|
943 |
+
type: mteb/trec-covid
|
944 |
+
config: default
|
945 |
+
split: test
|
946 |
+
revision: None
|
947 |
+
metrics:
|
948 |
+
- type: map_at_1
|
949 |
+
value: 0.244
|
950 |
+
- type: map_at_10
|
951 |
+
value: 2.183
|
952 |
+
- type: map_at_100
|
953 |
+
value: 13.712
|
954 |
+
- type: map_at_1000
|
955 |
+
value: 33.147
|
956 |
+
- type: map_at_3
|
957 |
+
value: 0.7270000000000001
|
958 |
+
- type: map_at_5
|
959 |
+
value: 1.199
|
960 |
+
- type: mrr_at_1
|
961 |
+
value: 94
|
962 |
+
- type: mrr_at_10
|
963 |
+
value: 97
|
964 |
+
- type: mrr_at_100
|
965 |
+
value: 97
|
966 |
+
- type: mrr_at_1000
|
967 |
+
value: 97
|
968 |
+
- type: mrr_at_3
|
969 |
+
value: 97
|
970 |
+
- type: mrr_at_5
|
971 |
+
value: 97
|
972 |
+
- type: ndcg_at_1
|
973 |
+
value: 92
|
974 |
+
- type: ndcg_at_10
|
975 |
+
value: 84.399
|
976 |
+
- type: ndcg_at_100
|
977 |
+
value: 66.771
|
978 |
+
- type: ndcg_at_1000
|
979 |
+
value: 59.092
|
980 |
+
- type: ndcg_at_3
|
981 |
+
value: 89.173
|
982 |
+
- type: ndcg_at_5
|
983 |
+
value: 88.52600000000001
|
984 |
+
- type: precision_at_1
|
985 |
+
value: 94
|
986 |
+
- type: precision_at_10
|
987 |
+
value: 86.8
|
988 |
+
- type: precision_at_100
|
989 |
+
value: 68.24
|
990 |
+
- type: precision_at_1000
|
991 |
+
value: 26.003999999999998
|
992 |
+
- type: precision_at_3
|
993 |
+
value: 92.667
|
994 |
+
- type: precision_at_5
|
995 |
+
value: 92.4
|
996 |
+
- type: recall_at_1
|
997 |
+
value: 0.244
|
998 |
+
- type: recall_at_10
|
999 |
+
value: 2.302
|
1000 |
+
- type: recall_at_100
|
1001 |
+
value: 16.622
|
1002 |
+
- type: recall_at_1000
|
1003 |
+
value: 55.175
|
1004 |
+
- type: recall_at_3
|
1005 |
+
value: 0.748
|
1006 |
+
- type: recall_at_5
|
1007 |
+
value: 1.247
|
1008 |
+
- type: main_score
|
1009 |
+
value: 84.399
|
1010 |
+
- task:
|
1011 |
+
type: Retrieval
|
1012 |
+
dataset:
|
1013 |
+
name: MTEB Touche2020
|
1014 |
+
type: mteb/touche2020
|
1015 |
+
config: default
|
1016 |
+
split: test
|
1017 |
+
revision: None
|
1018 |
+
metrics:
|
1019 |
+
- type: map_at_1
|
1020 |
+
value: 2.707
|
1021 |
+
- type: map_at_10
|
1022 |
+
value: 10.917
|
1023 |
+
- type: map_at_100
|
1024 |
+
value: 16.308
|
1025 |
+
- type: map_at_1000
|
1026 |
+
value: 17.953
|
1027 |
+
- type: map_at_3
|
1028 |
+
value: 5.65
|
1029 |
+
- type: map_at_5
|
1030 |
+
value: 7.379
|
1031 |
+
- type: mrr_at_1
|
1032 |
+
value: 34.694
|
1033 |
+
- type: mrr_at_10
|
1034 |
+
value: 49.745
|
1035 |
+
- type: mrr_at_100
|
1036 |
+
value: 50.309000000000005
|
1037 |
+
- type: mrr_at_1000
|
1038 |
+
value: 50.32
|
1039 |
+
- type: mrr_at_3
|
1040 |
+
value: 44.897999999999996
|
1041 |
+
- type: mrr_at_5
|
1042 |
+
value: 48.061
|
1043 |
+
- type: ndcg_at_1
|
1044 |
+
value: 33.672999999999995
|
1045 |
+
- type: ndcg_at_10
|
1046 |
+
value: 26.894000000000002
|
1047 |
+
- type: ndcg_at_100
|
1048 |
+
value: 37.423
|
1049 |
+
- type: ndcg_at_1000
|
1050 |
+
value: 49.376999999999995
|
1051 |
+
- type: ndcg_at_3
|
1052 |
+
value: 30.456
|
1053 |
+
- type: ndcg_at_5
|
1054 |
+
value: 27.772000000000002
|
1055 |
+
- type: precision_at_1
|
1056 |
+
value: 34.694
|
1057 |
+
- type: precision_at_10
|
1058 |
+
value: 23.878
|
1059 |
+
- type: precision_at_100
|
1060 |
+
value: 7.489999999999999
|
1061 |
+
- type: precision_at_1000
|
1062 |
+
value: 1.555
|
1063 |
+
- type: precision_at_3
|
1064 |
+
value: 31.293
|
1065 |
+
- type: precision_at_5
|
1066 |
+
value: 26.939
|
1067 |
+
- type: recall_at_1
|
1068 |
+
value: 2.707
|
1069 |
+
- type: recall_at_10
|
1070 |
+
value: 18.104
|
1071 |
+
- type: recall_at_100
|
1072 |
+
value: 46.93
|
1073 |
+
- type: recall_at_1000
|
1074 |
+
value: 83.512
|
1075 |
+
- type: recall_at_3
|
1076 |
+
value: 6.622999999999999
|
1077 |
+
- type: recall_at_5
|
1078 |
+
value: 10.051
|
1079 |
+
- type: main_score
|
1080 |
+
value: 26.894000000000002
|
1081 |
+
---
|
1082 |
+
|
1083 |
+
# VenkatNDivi77/e5-R-mistral-7b-Q4_K_M-GGUF
|
1084 |
+
This model was converted to GGUF format from [`BeastyZ/e5-R-mistral-7b`](https://huggingface.co/BeastyZ/e5-R-mistral-7b) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
|
1085 |
+
Refer to the [original model card](https://huggingface.co/BeastyZ/e5-R-mistral-7b) for more details on the model.
|
1086 |
+
|
1087 |
+
## Use with llama.cpp
|
1088 |
+
Install llama.cpp through brew (works on Mac and Linux)
|
1089 |
+
|
1090 |
+
```bash
|
1091 |
+
brew install llama.cpp
|
1092 |
+
|
1093 |
+
```
|
1094 |
+
Invoke the llama.cpp server or the CLI.
|
1095 |
+
|
1096 |
+
### CLI:
|
1097 |
+
```bash
|
1098 |
+
llama-cli --hf-repo VenkatNDivi77/e5-R-mistral-7b-Q4_K_M-GGUF --hf-file e5-r-mistral-7b-q4_k_m.gguf -p "The meaning to life and the universe is"
|
1099 |
+
```
|
1100 |
+
|
1101 |
+
### Server:
|
1102 |
+
```bash
|
1103 |
+
llama-server --hf-repo VenkatNDivi77/e5-R-mistral-7b-Q4_K_M-GGUF --hf-file e5-r-mistral-7b-q4_k_m.gguf -c 2048
|
1104 |
+
```
|
1105 |
+
|
1106 |
+
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
|
1107 |
+
|
1108 |
+
Step 1: Clone llama.cpp from GitHub.
|
1109 |
+
```
|
1110 |
+
git clone https://github.com/ggerganov/llama.cpp
|
1111 |
+
```
|
1112 |
+
|
1113 |
+
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
|
1114 |
+
```
|
1115 |
+
cd llama.cpp && LLAMA_CURL=1 make
|
1116 |
+
```
|
1117 |
+
|
1118 |
+
Step 3: Run inference through the main binary.
|
1119 |
+
```
|
1120 |
+
./llama-cli --hf-repo VenkatNDivi77/e5-R-mistral-7b-Q4_K_M-GGUF --hf-file e5-r-mistral-7b-q4_k_m.gguf -p "The meaning to life and the universe is"
|
1121 |
+
```
|
1122 |
+
or
|
1123 |
+
```
|
1124 |
+
./llama-server --hf-repo VenkatNDivi77/e5-R-mistral-7b-Q4_K_M-GGUF --hf-file e5-r-mistral-7b-q4_k_m.gguf -c 2048
|
1125 |
+
```
|