File size: 1,220 Bytes
049ab2d 414c7fb 6ecf764 c9a8f43 b3d1621 c9a8f43 6067822 c9a8f43 c995abc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
---
license: mit
language:
- it
base_model:
- GroNLP/gpt2-small-italian
pipeline_tag: text-generation
tags:
- legal
library_name: transformers
---
## Usage
```
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("VerbACxSS/sempl-it-gpt2-small-italian", model_max_length=1024)
model = AutoModelForCausalLM.from_pretrained("VerbACxSS/sempl-it-gpt2-small-italian")
model.eval()
text_to_simplify = 'Nella fattispecie, questo documento è di natura prescrittiva'
prompt = f'### [Input]:\n{text_to_simplify}\n\n###[Output]:\n'
x = tokenizer(prompt, max_length=1024, truncation=True, padding=True, return_tensors='pt').input_ids
y = model.generate(x, max_length=1024)[0]
y_dec = tokenizer.decode(y, max_length=1024, truncation=True)
output = y_dec.split('###[Output]:\n')[1].split('<|endoftext|>')[0].strip()
print(output)
```
## Acknowledgements
This contribution is a result of the research conducted within the framework of the PRIN 2020 (Progetti di Rilevante Interesse Nazionale) "VerbACxSS: on analytic verbs, complexity, synthetic verbs, and simplification. For accessibility" (Prot. 2020BJKB9M), funded by the Italian Ministero dell'Università e della Ricerca. |