VesperAI commited on
Commit
fd58277
·
verified ·
1 Parent(s): cef64d9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +320 -1
README.md CHANGED
@@ -1,3 +1,322 @@
1
  ---
 
 
2
  license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.2
3
+ inference: false
4
  license: apache-2.0
5
+ model_creator: Mistral AI_
6
+ model_name: Mistral 7B Instruct v0.2
7
+ model_type: mistral
8
+ pipeline_tag: text-generation
9
+ prompt_template: '<s>[INST] {prompt} [/INST]
10
+
11
+ '
12
+ quantized_by: VesperAI
13
+ tags:
14
+ - finetuned
15
+ ---
16
+
17
+ # Mistral 7B Instruct v0.2 - GGUF
18
+ - Model creator: [Mistral AI_](https://huggingface.co/mistralai)
19
+ - Original model: [Mistral 7B Instruct v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
20
+
21
+ <!-- description start -->
22
+ ## Description
23
+
24
+ This repo contains GGUF format model files for [Mistral AI_'s Mistral 7B Instruct v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2).
25
+
26
+
27
+ <!-- description end -->
28
+ <!-- README_GGUF.md-about-gguf start -->
29
+ ### About GGUF
30
+
31
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
32
+
33
+ Here is an incomplete list of clients and libraries that are known to support GGUF:
34
+
35
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
36
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
37
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
38
+ * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.
39
+ * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.
40
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
41
+ * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
42
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
43
+ * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
44
+ * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.
45
+
46
+ <!-- README_GGUF.md-about-gguf end -->
47
+
48
+
49
+ <!-- prompt-template start -->
50
+ ## Prompt template: Mistral
51
+
52
+ ```
53
+ <s>[INST] {prompt} [/INST]
54
+
55
+ ```
56
+
57
+ <!-- prompt-template end -->
58
+
59
+ <!-- README_GGUF.md-provided-files start -->
60
+ ## Provided files
61
+
62
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
63
+ | ---- | ---- | ---- | ---- | ---- | ----- |
64
+ | [mistral-7b-instruct-v0.2.Q2_K.gguf](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF/blob/main/mistral-7b-instruct-v0.2.Q2_K.gguf) | Q2_K | 2 | 3.08 GB| 5.58 GB | smallest, significant quality loss - not recommended for most purposes |
65
+ | [mistral-7b-instruct-v0.2.Q3_K_S.gguf](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF/blob/main/mistral-7b-instruct-v0.2.Q3_K_S.gguf) | Q3_K_S | 3 | 3.16 GB| 5.66 GB | very small, high quality loss |
66
+ | [mistral-7b-instruct-v0.2.Q3_K_M.gguf](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF/blob/main/mistral-7b-instruct-v0.2.Q3_K_M.gguf) | Q3_K_M | 3 | 3.52 GB| 6.02 GB | very small, high quality loss |
67
+ | [mistral-7b-instruct-v0.2.Q3_K_L.gguf](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF/blob/main/mistral-7b-instruct-v0.2.Q3_K_L.gguf) | Q3_K_L | 3 | 3.82 GB| 6.32 GB | small, substantial quality loss |
68
+ | [mistral-7b-instruct-v0.2.Q4_0.gguf](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF/blob/main/mistral-7b-instruct-v0.2.Q4_0.gguf) | Q4_0 | 4 | 4.11 GB| 6.61 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
69
+ | [mistral-7b-instruct-v0.2.Q4_K_S.gguf](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF/blob/main/mistral-7b-instruct-v0.2.Q4_K_S.gguf) | Q4_K_S | 4 | 4.14 GB| 6.64 GB | small, greater quality loss |
70
+ | [mistral-7b-instruct-v0.2.Q4_K_M.gguf](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF/blob/main/mistral-7b-instruct-v0.2.Q4_K_M.gguf) | Q4_K_M | 4 | 4.37 GB| 6.87 GB | medium, balanced quality - recommended |
71
+ | [mistral-7b-instruct-v0.2.Q5_0.gguf](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF/blob/main/mistral-7b-instruct-v0.2.Q5_0.gguf) | Q5_0 | 5 | 5.00 GB| 7.50 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
72
+ | [mistral-7b-instruct-v0.2.Q5_K_S.gguf](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF/blob/main/mistral-7b-instruct-v0.2.Q5_K_S.gguf) | Q5_K_S | 5 | 5.00 GB| 7.50 GB | large, low quality loss - recommended |
73
+ | [mistral-7b-instruct-v0.2.Q5_K_M.gguf](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF/blob/main/mistral-7b-instruct-v0.2.Q5_K_M.gguf) | Q5_K_M | 5 | 5.13 GB| 7.63 GB | large, very low quality loss - recommended |
74
+ | [mistral-7b-instruct-v0.2.Q6_K.gguf](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF/blob/main/mistral-7b-instruct-v0.2.Q6_K.gguf) | Q6_K | 6 | 5.94 GB| 8.44 GB | very large, extremely low quality loss |
75
+ | [mistral-7b-instruct-v0.2.Q8_0.gguf](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF/blob/main/mistral-7b-instruct-v0.2.Q8_0.gguf) | Q8_0 | 8 | 7.70 GB| 10.20 GB | very large, extremely low quality loss - not recommended |
76
+
77
+ **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
78
+
79
+
80
+
81
+ <!-- README_GGUF.md-provided-files end -->
82
+
83
+ <!-- README_GGUF.md-how-to-download start -->
84
+ ## How to download GGUF files
85
+
86
+ **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
87
+
88
+ The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
89
+
90
+ * LM Studio
91
+ * LoLLMS Web UI
92
+ * Faraday.dev
93
+
94
+ ### In `text-generation-webui`
95
+
96
+ Under Download Model, you can enter the model repo: TheBloke/Mistral-7B-Instruct-v0.2-GGUF and below it, a specific filename to download, such as: mistral-7b-instruct-v0.2.Q4_K_M.gguf.
97
+
98
+ Then click Download.
99
+
100
+ ### On the command line, including multiple files at once
101
+
102
+ I recommend using the `huggingface-hub` Python library:
103
+
104
+ ```shell
105
+ pip3 install huggingface-hub
106
+ ```
107
+
108
+ Then you can download any individual model file to the current directory, at high speed, with a command like this:
109
+
110
+ ```shell
111
+ huggingface-cli download TheBloke/Mistral-7B-Instruct-v0.2-GGUF mistral-7b-instruct-v0.2.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
112
+ ```
113
+
114
+ <details>
115
+ <summary>More advanced huggingface-cli download usage (click to read)</summary>
116
+
117
+ You can also download multiple files at once with a pattern:
118
+
119
+ ```shell
120
+ huggingface-cli download TheBloke/Mistral-7B-Instruct-v0.2-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
121
+ ```
122
+
123
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
124
+
125
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
126
+
127
+ ```shell
128
+ pip3 install hf_transfer
129
+ ```
130
+
131
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
132
+
133
+ ```shell
134
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Mistral-7B-Instruct-v0.2-GGUF mistral-7b-instruct-v0.2.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
135
+ ```
136
+
137
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
138
+ </details>
139
+ <!-- README_GGUF.md-how-to-download end -->
140
+
141
+ <!-- README_GGUF.md-how-to-run start -->
142
+ ## Example `llama.cpp` command
143
+
144
+ Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
145
+
146
+ ```shell
147
+ ./main -ngl 35 -m mistral-7b-instruct-v0.2.Q4_K_M.gguf --color -c 32768 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<s>[INST] {prompt} [/INST]"
148
+ ```
149
+
150
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
151
+
152
+ Change `-c 32768` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.
153
+
154
+ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
155
+
156
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
157
+
158
+ ## How to run in `text-generation-webui`
159
+
160
+ Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp).
161
+
162
+ ## How to run from Python code
163
+
164
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python.
165
+
166
+ ### How to load this model in Python code, using llama-cpp-python
167
+
168
+ For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/).
169
+
170
+ #### First install the package
171
+
172
+ Run one of the following commands, according to your system:
173
+
174
+ ```shell
175
+ # Base ctransformers with no GPU acceleration
176
+ pip install llama-cpp-python
177
+ # With NVidia CUDA acceleration
178
+ CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python
179
+ # Or with OpenBLAS acceleration
180
+ CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
181
+ # Or with CLBLast acceleration
182
+ CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python
183
+ # Or with AMD ROCm GPU acceleration (Linux only)
184
+ CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python
185
+ # Or with Metal GPU acceleration for macOS systems only
186
+ CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python
187
+
188
+ # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA:
189
+ $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on"
190
+ pip install llama-cpp-python
191
+ ```
192
+
193
+ #### Simple llama-cpp-python example code
194
+
195
+ ```python
196
+ from llama_cpp import Llama
197
+
198
+ # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
199
+ llm = Llama(
200
+ model_path="./mistral-7b-instruct-v0.2.Q4_K_M.gguf", # Download the model file first
201
+ n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources
202
+ n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance
203
+ n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available
204
+ )
205
+
206
+ # Simple inference example
207
+ output = llm(
208
+ "<s>[INST] {prompt} [/INST]", # Prompt
209
+ max_tokens=512, # Generate up to 512 tokens
210
+ stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using.
211
+ echo=True # Whether to echo the prompt
212
+ )
213
+
214
+ # Chat Completion API
215
+
216
+ llm = Llama(model_path="./mistral-7b-instruct-v0.2.Q4_K_M.gguf", chat_format="llama-2") # Set chat_format according to the model you are using
217
+ llm.create_chat_completion(
218
+ messages = [
219
+ {"role": "system", "content": "You are a story writing assistant."},
220
+ {
221
+ "role": "user",
222
+ "content": "Write a story about llamas."
223
+ }
224
+ ]
225
+ )
226
+ ```
227
+
228
+ ## How to use with LangChain
229
+
230
+ Here are guides on using llama-cpp-python and ctransformers with LangChain:
231
+
232
+ * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
233
+ * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
234
+
235
+ <!-- README_GGUF.md-how-to-run end -->
236
+
237
+ <!-- footer start -->
238
+ <!-- 200823 -->
239
+
240
+ <!-- original-model-card start -->
241
+ # Original model card: Mistral AI_'s Mistral 7B Instruct v0.2
242
+
243
+
244
+ # Model Card for Mistral-7B-Instruct-v0.2
245
+
246
+ The Mistral-7B-Instruct-v0.2 Large Language Model (LLM) is an improved instruct fine-tuned version of [Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1).
247
+
248
+ For full details of this model please read our [paper](https://arxiv.org/abs/2310.06825) and [release blog post](https://mistral.ai/news/la-plateforme/).
249
+
250
+ ## Instruction format
251
+
252
+ In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[/INST]` tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id.
253
+
254
+ E.g.
255
+ ```
256
+ text = "<s>[INST] What is your favourite condiment? [/INST]"
257
+ "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> "
258
+ "[INST] Do you have mayonnaise recipes? [/INST]"
259
+ ```
260
+
261
+ This format is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating) via the `apply_chat_template()` method:
262
+
263
+ ```python
264
+ from transformers import AutoModelForCausalLM, AutoTokenizer
265
+
266
+ device = "cuda" # the device to load the model onto
267
+
268
+ model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
269
+ tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
270
+
271
+ messages = [
272
+ {"role": "user", "content": "What is your favourite condiment?"},
273
+ {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
274
+ {"role": "user", "content": "Do you have mayonnaise recipes?"}
275
+ ]
276
+
277
+ encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
278
+
279
+ model_inputs = encodeds.to(device)
280
+ model.to(device)
281
+
282
+ generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
283
+ decoded = tokenizer.batch_decode(generated_ids)
284
+ print(decoded[0])
285
+ ```
286
+
287
+ ## Model Architecture
288
+ This instruction model is based on Mistral-7B-v0.1, a transformer model with the following architecture choices:
289
+ - Grouped-Query Attention
290
+ - Sliding-Window Attention
291
+ - Byte-fallback BPE tokenizer
292
+
293
+ ## Troubleshooting
294
+ - If you see the following error:
295
+ ```
296
+ Traceback (most recent call last):
297
+ File "", line 1, in
298
+ File "/transformers/models/auto/auto_factory.py", line 482, in from_pretrained
299
+ config, kwargs = AutoConfig.from_pretrained(
300
+ File "/transformers/models/auto/configuration_auto.py", line 1022, in from_pretrained
301
+ config_class = CONFIG_MAPPING[config_dict["model_type"]]
302
+ File "/transformers/models/auto/configuration_auto.py", line 723, in getitem
303
+ raise KeyError(key)
304
+ KeyError: 'mistral'
305
+ ```
306
+
307
+ Installing transformers from source should solve the issue
308
+ pip install git+https://github.com/huggingface/transformers
309
+
310
+ This should not be required after transformers-v4.33.4.
311
+
312
+ ## Limitations
313
+
314
+ The Mistral 7B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance.
315
+ It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to
316
+ make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.
317
+
318
+ ## The Mistral AI Team
319
+
320
+ Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Louis Ternon, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
321
+
322
+ <!-- original-model-card end -->