File size: 2,964 Bytes
a4df890 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
import os
from transformers import AutoTokenizer
from llmcompressor.transformers import SparseAutoModelForCausalLM
from llmcompressor.transformers import oneshot
from llmcompressor.modifiers.quantization import QuantizationModifier
def get_user_input():
"""Get model configuration from user input"""
print("\n=== Model Quantization Configuration ===")
while True:
model_id = input("\nEnter the HuggingFace model ID (e.g., meta-llama/Llama-2-7b-chat-hf): ").strip()
if model_id:
break
print("Model ID cannot be empty. Please try again.")
return model_id
def quantize_model_fp8(model_id):
"""
Quantize a model to FP8 Dynamic format using llm-compressor on CPU.
Args:
model_id (str): HuggingFace model ID
"""
try:
print(f"\nLoading model and tokenizer: {model_id}")
model = SparseAutoModelForCausalLM.from_pretrained(
model_id,
device_map="cpu",
torch_dtype="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
print("\nConfiguring FP8 quantization recipe...")
recipe = QuantizationModifier(
targets="Linear",
scheme="FP8_DYNAMIC",
ignore=["lm_head"]
)
print("\nApplying quantization (this may take a while)...")
oneshot(model=model, recipe=recipe)
model_name = model_id.split("/")[-1]
save_dir = f"{model_name}-FP8-Dynamic"
print(f"\nSaving quantized model to: {save_dir}")
model.save_pretrained(save_dir, save_compressed=True)
tokenizer.save_pretrained(save_dir)
print("\nβ
Quantization completed successfully!")
print(f"π Quantized model saved to: {os.path.abspath(save_dir)}")
return save_dir
except Exception as e:
print(f"\nβ Error during quantization: {str(e)}")
return None
if __name__ == "__main__":
print("""
ββββββββββββββββββββββββββββββββββββββββ
β Model Quantization to FP8 β
β (Dynamic Per-Token) β
ββββββββββββββββββββββββββββββββββββββββ
""")
model_id = get_user_input()
print("\n=== Configuration Summary ===")
print(f"Model ID: {model_id}")
print("Quantization Type: FP8 Dynamic (per-token)")
print("Device: CPU")
while True:
confirm = input("\nProceed with quantization? (y/n): ").lower().strip()
if confirm in ['y', 'n']:
break
print("Please enter 'y' for yes or 'n' for no.")
if confirm == 'y':
quantized_model_path = quantize_model_fp8(model_id)
else:
print("\nQuantization cancelled.") |