--- library_name: llamacpp model_name: Vikhr-Qwen-2.5-0.5B-instruct base_model: - Vikhrmodels/Vikhr-Qwen-2.5-0.5B-instruct language: - ru - en license: apache-2.0 tags: - instruct datasets: - Vikhrmodels/GrandMaster-PRO-MAX pipeline_tag: text-generation --- # 💨📟 Vikhr-Qwen-2.5-0.5B-Instruct #### RU Инструктивная модель на основе **Qwen-2.5-0.5B-Instruct**, обученная на русскоязычном датасете **GrandMaster-PRO-MAX**. В **4 раза эффективнее** базовой модели, и идеально подходит для запуска на слабых мобильных устройствах. #### EN Instructive model based on **Qwen-2.5-0.5B-Instruct**, trained on the Russian-language dataset **GrandMaster-PRO-MAX**. It is **4 times more efficient** than the base model, making it perfect for deployment on low-end mobile devices. - [HF model](https://huggingface.co/Vikhrmodels/Vikhr-Qwen-2.5-0.5B-instruct) **Рекомендуемая температура для генерации: 0.3** / **Recommended generation temperature: 0.3**. ### Авторы / Authors - Sergei Bratchikov, [NLP Wanderer](https://t.me/nlpwanderer), [Vikhr Team](https://t.me/vikhrlabs) - Nikolay Kompanets, [LakoMoor](https://t.me/lakomoor), [Vikhr Team](https://t.me/vikhrlabs) - Konstantin Korolev, [Vikhr Team](https://t.me/vikhrlabs) - Aleksandr Nikolich, [Vikhr Team](https://t.me/vikhrlabs) ``` @article{nikolich2024vikhr, title={Vikhr: The Family of Open-Source Instruction-Tuned Large Language Models for Russian}, author={Aleksandr Nikolich and Konstantin Korolev and Sergey Bratchikov and Nikolay Kompanets and Artem Shelmanov}, journal={arXiv preprint arXiv:2405.13929}, year={2024}, url={https://arxiv.org/pdf/2405.13929} }