mansoorhamidzadeh
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,201 +1,108 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
|
|
3 |
language:
|
4 |
- fa
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
pipeline_tag: token-classification
|
6 |
---
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
11 |
-
|
12 |
-
|
13 |
|
14 |
## Model Details
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
- **
|
24 |
-
- **
|
25 |
-
- **Model
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
## How
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
102 |
-
|
103 |
-
[More Information Needed]
|
104 |
-
|
105 |
-
## Evaluation
|
106 |
-
|
107 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
108 |
-
|
109 |
-
### Testing Data, Factors & Metrics
|
110 |
-
|
111 |
-
#### Testing Data
|
112 |
-
|
113 |
-
<!-- This should link to a Dataset Card if possible. -->
|
114 |
-
|
115 |
-
[More Information Needed]
|
116 |
-
|
117 |
-
#### Factors
|
118 |
-
|
119 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
120 |
-
|
121 |
-
[More Information Needed]
|
122 |
-
|
123 |
-
#### Metrics
|
124 |
-
|
125 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
126 |
-
|
127 |
-
[More Information Needed]
|
128 |
-
|
129 |
-
### Results
|
130 |
-
|
131 |
-
[More Information Needed]
|
132 |
-
|
133 |
-
#### Summary
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
## Model Examination [optional]
|
138 |
-
|
139 |
-
<!-- Relevant interpretability work for the model goes here -->
|
140 |
-
|
141 |
-
[More Information Needed]
|
142 |
-
|
143 |
-
## Environmental Impact
|
144 |
-
|
145 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
146 |
-
|
147 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
148 |
-
|
149 |
-
- **Hardware Type:** [More Information Needed]
|
150 |
-
- **Hours used:** [More Information Needed]
|
151 |
-
- **Cloud Provider:** [More Information Needed]
|
152 |
-
- **Compute Region:** [More Information Needed]
|
153 |
-
- **Carbon Emitted:** [More Information Needed]
|
154 |
-
|
155 |
-
## Technical Specifications [optional]
|
156 |
-
|
157 |
-
### Model Architecture and Objective
|
158 |
-
|
159 |
-
[More Information Needed]
|
160 |
-
|
161 |
-
### Compute Infrastructure
|
162 |
-
|
163 |
-
[More Information Needed]
|
164 |
-
|
165 |
-
#### Hardware
|
166 |
-
|
167 |
-
[More Information Needed]
|
168 |
-
|
169 |
-
#### Software
|
170 |
-
|
171 |
-
[More Information Needed]
|
172 |
-
|
173 |
-
## Citation [optional]
|
174 |
-
|
175 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
176 |
-
|
177 |
-
**BibTeX:**
|
178 |
-
|
179 |
-
[More Information Needed]
|
180 |
-
|
181 |
-
**APA:**
|
182 |
-
|
183 |
-
[More Information Needed]
|
184 |
-
|
185 |
-
## Glossary [optional]
|
186 |
-
|
187 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
188 |
-
|
189 |
-
[More Information Needed]
|
190 |
-
|
191 |
-
## More Information [optional]
|
192 |
-
|
193 |
-
[More Information Needed]
|
194 |
-
|
195 |
-
## Model Card Authors [optional]
|
196 |
-
|
197 |
-
[More Information Needed]
|
198 |
-
|
199 |
-
## Model Card Contact
|
200 |
-
|
201 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
license: mit
|
4 |
language:
|
5 |
- fa
|
6 |
+
tags:
|
7 |
+
- named-entity-recognition
|
8 |
+
- ner
|
9 |
+
- nlp
|
10 |
+
- transformers
|
11 |
+
- persian
|
12 |
+
- farsi
|
13 |
+
- persian_ner
|
14 |
+
- bert
|
15 |
+
metrics:
|
16 |
+
- accuracy
|
17 |
pipeline_tag: token-classification
|
18 |
---
|
19 |
|
20 |
+
# Hafez NER for Persian using Transformers
|
|
|
|
|
|
|
|
|
21 |
|
22 |
## Model Details
|
23 |
|
24 |
+
**Model Description:**
|
25 |
+
This Named-Entity-Recognition (NER) model is designed to identify and classify named entities in Persian (Farsi) text into predefined categories such as person names, organizations, locations, dates, and more. The model is built using the Hugging Face Transformers library and fine-tuned on the [ViravirastSHZ/Hafez_Bert](https://huggingface.co/ViravirastSHZ/Hafez_Bert) model.
|
26 |
+
|
27 |
+
**Intended Use:**
|
28 |
+
The model is intended for use in applications where identifying and classifying entities in Persian text is required. It can be used for information retrieval, content analysis, customer support automation, and more.
|
29 |
+
|
30 |
+
**Model Architecture:**
|
31 |
+
- **Model Type:** Transformers-based NER
|
32 |
+
- **Language:** Persian (fa)
|
33 |
+
- **Base Model:** [ViravirastSHZ/Hafez_Bert](https://huggingface.co/ViravirastSHZ/Hafez_Bert)
|
34 |
+
|
35 |
+
## Training Data
|
36 |
+
|
37 |
+
**Dataset:**
|
38 |
+
The model was trained on a diverse corpus of Persian text, with a training dataset of 23,000
|
39 |
+
|
40 |
+
**Data Preprocessing:**
|
41 |
+
- Text normalization and cleaning were performed to ensure consistency.
|
42 |
+
- Tokenization was done using the BERT tokenizer.
|
43 |
+
|
44 |
+
## Training Procedure
|
45 |
+
|
46 |
+
**Training Configuration:**
|
47 |
+
- **Number of Epochs:** 3
|
48 |
+
- **Batch Size:** 8
|
49 |
+
- **Learning Rate:** 1e-5
|
50 |
+
- **Optimizer:** AdamW
|
51 |
+
|
52 |
+
**Hardware:**
|
53 |
+
- **Training Environment:** NVIDIA P100 GPU
|
54 |
+
- **Training Time:** Approximately 1 hour
|
55 |
+
|
56 |
+
## Model Prediction Tags
|
57 |
+
The model predicts the following tags:
|
58 |
+
- "O"
|
59 |
+
- "I-DAT"
|
60 |
+
- "I-EVE"
|
61 |
+
- "I-FAC"
|
62 |
+
- "I-LOC"
|
63 |
+
- "I-MON"
|
64 |
+
- "I-ORG"
|
65 |
+
- "I-PCT"
|
66 |
+
- "I-PER"
|
67 |
+
- "I-PRO"
|
68 |
+
- "I-TIM"
|
69 |
+
- "B-DAT"
|
70 |
+
- "B-EVE"
|
71 |
+
- "B-FAC"
|
72 |
+
- "B-LOC"
|
73 |
+
- "B-MON"
|
74 |
+
- "B-ORG"
|
75 |
+
- "B-PCT"
|
76 |
+
- "B-PER"
|
77 |
+
- "B-PRO"
|
78 |
+
- "B-TIM"
|
79 |
+
|
80 |
+
## How To Use
|
81 |
+
|
82 |
+
```python
|
83 |
+
import torch
|
84 |
+
from transformers import pipeline
|
85 |
+
|
86 |
+
# Load the NER pipeline
|
87 |
+
ner_pipeline = pipeline("ner", model="ViravirastSHZ/Hafez-NER")
|
88 |
+
|
89 |
+
# Example text in Persian
|
90 |
+
text = "باراک اوباما در هاوایی متولد شد."
|
91 |
+
|
92 |
+
# Perform NER
|
93 |
+
entities = ner_pipeline(text)
|
94 |
+
|
95 |
+
# Output the entities
|
96 |
+
print(entities)
|
97 |
+
|
98 |
+
```
|
99 |
+
|
100 |
+
```bibtex
|
101 |
+
@misc{ViravirastSHZ,
|
102 |
+
author = {ViravirastSHZ},
|
103 |
+
title = {Named-Entity-Recognition for Persian using Transformers},
|
104 |
+
year = {2024},
|
105 |
+
publisher = {Hugging Face},
|
106 |
+
howpublished = {\url{https://huggingface.co/"ViravirastSHZ/Hafez-NER}},
|
107 |
+
}
|
108 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|