--- tags: - merge - mergekit - lazymergekit - FuseAI/FuseChat-7B-VaRM - MediaTek-Research/Breeze-7B-Instruct-v1_0 - tokyotech-llm/Swallow-MS-7b-v0.1 base_model: - FuseAI/FuseChat-7B-VaRM - MediaTek-Research/Breeze-7B-Instruct-v1_0 - tokyotech-llm/Swallow-MS-7b-v0.1 --- # FMT-v1 FMT-v1 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [FuseAI/FuseChat-7B-VaRM](https://huggingface.co/FuseAI/FuseChat-7B-VaRM) * [MediaTek-Research/Breeze-7B-Instruct-v1_0](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v1_0) * [tokyotech-llm/Swallow-MS-7b-v0.1](https://huggingface.co/tokyotech-llm/Swallow-MS-7b-v0.1) ## 🧩 Configuration ```yaml models: - model: FuseAI/FuseChat-7B-VaRM parameters: weight: 1.0 - model: MediaTek-Research/Breeze-7B-Instruct-v1_0 parameters: weight: 0.75 - model: tokyotech-llm/Swallow-MS-7b-v0.1 parameters: weight: 0.55 merge_method: task_arithmetic base_model: FuseAI/FuseChat-7B-VaRM parameters: normalize: true int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Virt-io/FMT-v1" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```