File size: 2,404 Bytes
70cc917
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---

base_model:
- black-forest-labs/FLUX.1-dev
library_name: diffusers
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
pipeline_tag: image-to-image
inference: False
tags:
- ControlNet
- super-resolution
- upscaler
---

# ⚡ Flux.1-dev: Upscaler ControlNet ⚡

This is [Flux.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev) ControlNet for low resolution images developed by Jasper research team.

<p align="center">
   <img style="width:700px;" src="examples/showcase.jpg">
</p>

# How to use
This model can be used directly with the `diffusers` library

```python

import torch

from diffusers.utils import load_image

from diffusers import FluxControlNetModel

from diffusers.pipelines import FluxControlNetPipeline



# Load pipeline

controlnet = FluxControlNetModel.from_pretrained(

  "jasperai/Flux.1-dev-Controlnet-Upscaler",

  torch_dtype=torch.bfloat16

)

pipe = FluxControlNetPipeline.from_pretrained(

  "black-forest-labs/FLUX.1-dev",

  controlnet=controlnet,

  torch_dtype=torch.bfloat16

)

pipe.to("cuda")



# Load a control image

control_image = load_image(

  "https://huggingface.co/jasperai/Flux.1-dev-Controlnet-Upscaler/resolve/main/examples/input.jpg"

)



w, h = control_image.size



# Upscale x4

control_image = control_image.resize((w * 4, h * 4))



image = pipe(

    prompt="", 

    control_image=control_image,

    controlnet_conditioning_scale=0.6,

    num_inference_steps=28, 

    guidance_scale=3.5,

    height=control_image.size[1],

    width=control_image.size[0]

).images[0]

image

```

<p align="center">
   <img style="width:500px;" src="examples/output.jpg">
</p>


# Training
This model was trained with a synthetic complex data degradation scheme taking as input a *real-life* image and artificially degrading it by combining several degradations such as amongst other image noising (Gaussian, Poisson), image blurring and JPEG compression in a similar spirit as [1]

[1] Wang, Xintao, et al. "Real-esrgan: Training real-world blind super-resolution with pure synthetic data." Proceedings of the IEEE/CVF international conference on computer vision. 2021.

# Licence
This model falls under the [Flux.1-dev model licence](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md).