Upload speech emotion recognition model
Browse files
main.py
ADDED
@@ -0,0 +1,519 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import wandb
|
4 |
+
import librosa
|
5 |
+
import torchaudio
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import pandas as pd
|
9 |
+
import seaborn as sns
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.optim as optim
|
12 |
+
import matplotlib.pyplot as plt
|
13 |
+
import torch.nn.functional as F
|
14 |
+
|
15 |
+
from sklearn.utils import class_weight
|
16 |
+
from torch.utils.data import Dataset, DataLoader
|
17 |
+
from torch.optim.lr_scheduler import ReduceLROnPlateau
|
18 |
+
from sklearn.preprocessing import LabelEncoder, StandardScaler
|
19 |
+
from sklearn.metrics import classification_report, confusion_matrix
|
20 |
+
from sklearn.model_selection import train_test_split, StratifiedKFold
|
21 |
+
|
22 |
+
|
23 |
+
# Advanced Configuration with More Options
|
24 |
+
class Config:
|
25 |
+
"""Enhanced configuration for emotion recognition project"""
|
26 |
+
|
27 |
+
# Data paths
|
28 |
+
DATA_DIR = "archive"
|
29 |
+
|
30 |
+
# Audio processing parameters
|
31 |
+
SAMPLE_RATE = 22050 # Standard sample rate
|
32 |
+
DURATION = 3 # seconds
|
33 |
+
N_MFCC = 20
|
34 |
+
|
35 |
+
# Model hyperparameters
|
36 |
+
BATCH_SIZE = 32
|
37 |
+
LEARNING_RATE = 0.001
|
38 |
+
NUM_EPOCHS = 20
|
39 |
+
|
40 |
+
# Feature extraction parameters
|
41 |
+
FEATURES = [
|
42 |
+
"mfcc",
|
43 |
+
"spectral_centroid",
|
44 |
+
"chroma",
|
45 |
+
"spectral_contrast",
|
46 |
+
"zero_crossing_rate",
|
47 |
+
"spectral_rolloff",
|
48 |
+
]
|
49 |
+
|
50 |
+
# Augmentation parameters
|
51 |
+
AUGMENTATION = True
|
52 |
+
NOISE_FACTOR = 0.005
|
53 |
+
SCALE_RANGE = (0.9, 1.1)
|
54 |
+
|
55 |
+
|
56 |
+
def extract_advanced_features(file_path):
|
57 |
+
"""
|
58 |
+
Extract multiple audio features with more comprehensive approach
|
59 |
+
|
60 |
+
Args:
|
61 |
+
file_path (str): Path to the audio file
|
62 |
+
|
63 |
+
Returns:
|
64 |
+
numpy.ndarray: Concatenated feature vector
|
65 |
+
"""
|
66 |
+
# Load the audio file
|
67 |
+
y, sr = librosa.load(file_path, duration=Config.DURATION, sr=Config.SAMPLE_RATE)
|
68 |
+
|
69 |
+
# Feature extraction
|
70 |
+
features = []
|
71 |
+
|
72 |
+
# MFCC features (increased resolution)
|
73 |
+
if "mfcc" in Config.FEATURES:
|
74 |
+
mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=Config.N_MFCC)
|
75 |
+
mfccs_processed = np.mean(mfccs.T, axis=0)
|
76 |
+
features.append(mfccs_processed)
|
77 |
+
|
78 |
+
# Spectral Centroid
|
79 |
+
if "spectral_centroid" in Config.FEATURES:
|
80 |
+
spectral_centroids = librosa.feature.spectral_centroid(y=y, sr=sr)
|
81 |
+
spectral_centroids_processed = np.mean(spectral_centroids)
|
82 |
+
features.append([spectral_centroids_processed])
|
83 |
+
|
84 |
+
# Chroma Features
|
85 |
+
if "chroma" in Config.FEATURES:
|
86 |
+
chroma = librosa.feature.chroma_stft(y=y, sr=sr)
|
87 |
+
chroma_processed = np.mean(chroma.T, axis=0)
|
88 |
+
features.append(chroma_processed)
|
89 |
+
|
90 |
+
# Spectral Contrast
|
91 |
+
if "spectral_contrast" in Config.FEATURES:
|
92 |
+
spectral_contrast = librosa.feature.spectral_contrast(y=y, sr=sr)
|
93 |
+
spectral_contrast_processed = np.mean(spectral_contrast.T, axis=0)
|
94 |
+
features.append(spectral_contrast_processed)
|
95 |
+
|
96 |
+
# Zero Crossing Rate
|
97 |
+
if "zero_crossing_rate" in Config.FEATURES:
|
98 |
+
zcr = librosa.feature.zero_crossing_rate(y)
|
99 |
+
zcr_processed = np.mean(zcr)
|
100 |
+
features.append([zcr_processed])
|
101 |
+
|
102 |
+
# Spectral Rolloff
|
103 |
+
if "spectral_rolloff" in Config.FEATURES:
|
104 |
+
spectral_rolloff = librosa.feature.spectral_rolloff(y=y, sr=sr)
|
105 |
+
spectral_rolloff_processed = np.mean(spectral_rolloff)
|
106 |
+
features.append([spectral_rolloff_processed])
|
107 |
+
|
108 |
+
# Concatenate all features
|
109 |
+
return np.concatenate(features)
|
110 |
+
|
111 |
+
|
112 |
+
def augment_features(
|
113 |
+
features, noise_factor=Config.NOISE_FACTOR, scale_range=Config.SCALE_RANGE
|
114 |
+
):
|
115 |
+
"""
|
116 |
+
Advanced feature augmentation technique
|
117 |
+
|
118 |
+
Args:
|
119 |
+
features (numpy.ndarray): Input feature array
|
120 |
+
noise_factor (float): Magnitude of noise to add
|
121 |
+
scale_range (tuple): Range for feature scaling
|
122 |
+
|
123 |
+
Returns:
|
124 |
+
numpy.ndarray: Augmented features
|
125 |
+
"""
|
126 |
+
if not Config.AUGMENTATION:
|
127 |
+
return features
|
128 |
+
|
129 |
+
# Add Gaussian noise
|
130 |
+
noise = np.random.normal(0, noise_factor, features.shape)
|
131 |
+
augmented_features = features + noise
|
132 |
+
|
133 |
+
# Random scaling
|
134 |
+
scale_factor = np.random.uniform(scale_range[0], scale_range[1])
|
135 |
+
augmented_features *= scale_factor
|
136 |
+
|
137 |
+
return augmented_features
|
138 |
+
|
139 |
+
|
140 |
+
def prepare_dataset(data_dir):
|
141 |
+
"""
|
142 |
+
Prepare dataset with more robust feature extraction and potential augmentation
|
143 |
+
|
144 |
+
Args:
|
145 |
+
data_dir (str): Root directory containing actor subdirectories
|
146 |
+
|
147 |
+
Returns:
|
148 |
+
tuple: Features and labels
|
149 |
+
"""
|
150 |
+
features = []
|
151 |
+
labels = []
|
152 |
+
|
153 |
+
# Emotion mapping with potential for expansion
|
154 |
+
emotion_map = {
|
155 |
+
"01": "neutral",
|
156 |
+
"02": "calm",
|
157 |
+
"03": "happy",
|
158 |
+
"04": "sad",
|
159 |
+
"05": "angry",
|
160 |
+
"06": "fearful",
|
161 |
+
"07": "disgust",
|
162 |
+
"08": "surprised",
|
163 |
+
}
|
164 |
+
|
165 |
+
# Walk through all directories and subdirectories
|
166 |
+
for root, dirs, files in os.walk(data_dir):
|
167 |
+
for filename in files:
|
168 |
+
if filename.endswith(".wav"):
|
169 |
+
# Full file path
|
170 |
+
file_path = os.path.join(root, filename)
|
171 |
+
|
172 |
+
try:
|
173 |
+
# Extract emotion from filename
|
174 |
+
emotion_code = filename.split("-")[2]
|
175 |
+
emotion = emotion_map.get(emotion_code, "unknown")
|
176 |
+
|
177 |
+
# Extract original features
|
178 |
+
file_features = extract_advanced_features(file_path)
|
179 |
+
features.append(file_features)
|
180 |
+
labels.append(emotion)
|
181 |
+
|
182 |
+
# Optional augmentation
|
183 |
+
if Config.AUGMENTATION:
|
184 |
+
augmented_features = augment_features(file_features)
|
185 |
+
features.append(augmented_features)
|
186 |
+
labels.append(emotion)
|
187 |
+
|
188 |
+
except Exception as e:
|
189 |
+
print(f"Error processing {filename}: {e}")
|
190 |
+
|
191 |
+
# Informative print about dataset
|
192 |
+
print(f"Dataset Summary:")
|
193 |
+
print(f"Total files processed: {len(features)}")
|
194 |
+
|
195 |
+
# Count of emotions
|
196 |
+
from collections import Counter
|
197 |
+
|
198 |
+
emotion_counts = Counter(labels)
|
199 |
+
for emotion, count in emotion_counts.items():
|
200 |
+
print(f"{emotion.capitalize()} emotion: {count} samples")
|
201 |
+
|
202 |
+
return np.array(features), np.array(labels)
|
203 |
+
|
204 |
+
|
205 |
+
class EmotionDataset(Dataset):
|
206 |
+
"""Enhanced Custom PyTorch Dataset for Emotion Recognition"""
|
207 |
+
|
208 |
+
def __init__(self, features, labels, scaler=None):
|
209 |
+
# Standardize features
|
210 |
+
if scaler is None:
|
211 |
+
self.scaler = StandardScaler()
|
212 |
+
features = self.scaler.fit_transform(features)
|
213 |
+
else:
|
214 |
+
features = scaler.transform(features)
|
215 |
+
|
216 |
+
self.features = torch.FloatTensor(features)
|
217 |
+
|
218 |
+
# Encode labels
|
219 |
+
self.label_encoder = LabelEncoder()
|
220 |
+
self.labels = torch.LongTensor(self.label_encoder.fit_transform(labels))
|
221 |
+
|
222 |
+
def __len__(self):
|
223 |
+
return len(self.labels)
|
224 |
+
|
225 |
+
def __getitem__(self, idx):
|
226 |
+
return self.features[idx], self.labels[idx]
|
227 |
+
|
228 |
+
def get_num_classes(self):
|
229 |
+
return len(self.label_encoder.classes_)
|
230 |
+
|
231 |
+
def get_class_names(self):
|
232 |
+
return self.label_encoder.classes_
|
233 |
+
|
234 |
+
|
235 |
+
class HybridEmotionRecognitionModel(nn.Module):
|
236 |
+
"""Advanced Hybrid Neural Network for Emotion Recognition"""
|
237 |
+
|
238 |
+
def __init__(self, input_dim, num_classes):
|
239 |
+
super().__init__()
|
240 |
+
|
241 |
+
# Enhanced input projection with residual connection
|
242 |
+
self.input_projection = nn.Sequential(
|
243 |
+
nn.Linear(input_dim, 512),
|
244 |
+
nn.BatchNorm1d(512),
|
245 |
+
nn.ReLU(),
|
246 |
+
nn.Dropout(0.3),
|
247 |
+
nn.Linear(512, 256),
|
248 |
+
nn.ReLU(),
|
249 |
+
)
|
250 |
+
|
251 |
+
# More complex convolutional layers with residual connections
|
252 |
+
self.conv_layers = nn.ModuleList(
|
253 |
+
[
|
254 |
+
nn.Sequential(
|
255 |
+
nn.Conv1d(1, 64, kernel_size=3, padding=1),
|
256 |
+
nn.BatchNorm1d(64),
|
257 |
+
nn.ReLU(),
|
258 |
+
nn.MaxPool1d(2),
|
259 |
+
),
|
260 |
+
nn.Sequential(
|
261 |
+
nn.Conv1d(64, 128, kernel_size=3, padding=1),
|
262 |
+
nn.BatchNorm1d(128),
|
263 |
+
nn.ReLU(),
|
264 |
+
nn.MaxPool1d(2),
|
265 |
+
),
|
266 |
+
]
|
267 |
+
)
|
268 |
+
|
269 |
+
# Bidirectional LSTM with more layers
|
270 |
+
self.lstm_layers = nn.LSTM(
|
271 |
+
input_size=128,
|
272 |
+
hidden_size=256,
|
273 |
+
num_layers=3,
|
274 |
+
batch_first=True,
|
275 |
+
bidirectional=True,
|
276 |
+
dropout=0.4,
|
277 |
+
)
|
278 |
+
|
279 |
+
# More complex fully connected layers
|
280 |
+
self.fc_layers = nn.Sequential(
|
281 |
+
nn.Linear(512, 256), # Note the 512 due to bidirectional LSTM
|
282 |
+
nn.BatchNorm1d(256),
|
283 |
+
nn.ReLU(),
|
284 |
+
nn.Dropout(0.4),
|
285 |
+
nn.Linear(256, 128),
|
286 |
+
nn.BatchNorm1d(128),
|
287 |
+
nn.ReLU(),
|
288 |
+
nn.Dropout(0.3),
|
289 |
+
)
|
290 |
+
|
291 |
+
self.output_layer = nn.Linear(128, num_classes)
|
292 |
+
|
293 |
+
def forward(self, x):
|
294 |
+
# Input projection
|
295 |
+
x = self.input_projection(x)
|
296 |
+
|
297 |
+
# Reshape for conv layers
|
298 |
+
x = x.unsqueeze(1)
|
299 |
+
|
300 |
+
# Convolutional layers with residual-like processing
|
301 |
+
for conv_layer in self.conv_layers:
|
302 |
+
x = conv_layer(x)
|
303 |
+
|
304 |
+
# Prepare for LSTM
|
305 |
+
x = x.permute(0, 2, 1)
|
306 |
+
|
307 |
+
# LSTM processing
|
308 |
+
lstm_out, _ = self.lstm_layers(x)
|
309 |
+
x = lstm_out[:, -1, :]
|
310 |
+
|
311 |
+
# Fully connected layers
|
312 |
+
x = self.fc_layers(x)
|
313 |
+
|
314 |
+
return self.output_layer(x)
|
315 |
+
|
316 |
+
|
317 |
+
def train_model(model, train_loader, val_loader, labels, num_epochs=Config.NUM_EPOCHS):
|
318 |
+
"""
|
319 |
+
Advanced training function with improved techniques
|
320 |
+
|
321 |
+
Args:
|
322 |
+
model (nn.Module): PyTorch model
|
323 |
+
train_loader (DataLoader): Training data loader
|
324 |
+
val_loader (DataLoader): Validation data loader
|
325 |
+
labels (numpy.ndarray): Original labels for class weight computation
|
326 |
+
num_epochs (int): Number of training epochs
|
327 |
+
"""
|
328 |
+
# Compute class weights to handle class imbalance
|
329 |
+
class_weights = class_weight.compute_class_weight(
|
330 |
+
"balanced", classes=np.unique(labels), y=labels
|
331 |
+
)
|
332 |
+
class_weights = torch.FloatTensor(class_weights)
|
333 |
+
|
334 |
+
# Loss with class weights
|
335 |
+
criterion = nn.CrossEntropyLoss(weight=class_weights)
|
336 |
+
|
337 |
+
# Adam with weight decay (L2 regularization)
|
338 |
+
optimizer = optim.AdamW(
|
339 |
+
model.parameters(), lr=Config.LEARNING_RATE, weight_decay=1e-5
|
340 |
+
)
|
341 |
+
|
342 |
+
# Learning rate scheduler
|
343 |
+
scheduler = ReduceLROnPlateau(
|
344 |
+
optimizer, mode="min", factor=0.5, patience=5, verbose=True
|
345 |
+
)
|
346 |
+
|
347 |
+
# Initialize wandb
|
348 |
+
wandb.init(
|
349 |
+
project="SentimentSound",
|
350 |
+
config={
|
351 |
+
"learning_rate": Config.LEARNING_RATE,
|
352 |
+
"batch_size": Config.BATCH_SIZE,
|
353 |
+
"epochs": num_epochs,
|
354 |
+
"augmentation": Config.AUGMENTATION,
|
355 |
+
},
|
356 |
+
)
|
357 |
+
|
358 |
+
# Training loop with more advanced techniques
|
359 |
+
best_val_loss = float("inf")
|
360 |
+
for epoch in range(num_epochs):
|
361 |
+
model.train()
|
362 |
+
train_loss = 0
|
363 |
+
train_correct = 0
|
364 |
+
train_total = 0
|
365 |
+
|
366 |
+
for features, batch_labels in train_loader:
|
367 |
+
optimizer.zero_grad()
|
368 |
+
|
369 |
+
# Forward and backward pass
|
370 |
+
outputs = model(features)
|
371 |
+
loss = criterion(outputs, batch_labels)
|
372 |
+
|
373 |
+
loss.backward()
|
374 |
+
|
375 |
+
# Gradient clipping
|
376 |
+
nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
|
377 |
+
optimizer.step()
|
378 |
+
|
379 |
+
train_loss += loss.item()
|
380 |
+
_, predicted = torch.max(outputs.data, 1)
|
381 |
+
train_total += batch_labels.size(0)
|
382 |
+
train_correct += (predicted == batch_labels).sum().item()
|
383 |
+
|
384 |
+
# Validation
|
385 |
+
model.eval()
|
386 |
+
val_loss = 0
|
387 |
+
val_correct = 0
|
388 |
+
val_total = 0
|
389 |
+
|
390 |
+
with torch.no_grad():
|
391 |
+
for features, batch_labels in val_loader:
|
392 |
+
outputs = model(features)
|
393 |
+
loss = criterion(outputs, batch_labels)
|
394 |
+
|
395 |
+
val_loss += loss.item()
|
396 |
+
_, predicted = torch.max(outputs.data, 1)
|
397 |
+
val_total += batch_labels.size(0)
|
398 |
+
val_correct += (predicted == batch_labels).sum().item()
|
399 |
+
|
400 |
+
# Compute metrics
|
401 |
+
train_accuracy = 100 * train_correct / train_total
|
402 |
+
val_accuracy = 100 * val_correct / val_total
|
403 |
+
|
404 |
+
# Learning rate scheduling
|
405 |
+
scheduler.step(val_loss)
|
406 |
+
|
407 |
+
# Logging to wandb
|
408 |
+
wandb.log(
|
409 |
+
{
|
410 |
+
"train_loss": train_loss / len(train_loader),
|
411 |
+
"train_accuracy": train_accuracy,
|
412 |
+
"val_loss": val_loss / len(val_loader),
|
413 |
+
"val_accuracy": val_accuracy,
|
414 |
+
}
|
415 |
+
)
|
416 |
+
|
417 |
+
# Print epoch summary
|
418 |
+
print(f"Epoch {epoch+1}/{num_epochs}")
|
419 |
+
print(f"Train Loss: {train_loss / len(train_loader):.4f}")
|
420 |
+
print(f"Train Accuracy: {train_accuracy:.2f}%")
|
421 |
+
print(f"Val Loss: {val_loss / len(val_loader):.4f}")
|
422 |
+
print(f"Val Accuracy: {val_accuracy:.2f}%")
|
423 |
+
|
424 |
+
# Save best model
|
425 |
+
if val_loss < best_val_loss:
|
426 |
+
best_val_loss = val_loss
|
427 |
+
torch.save(model.state_dict(), "best_emotion_model.pth")
|
428 |
+
|
429 |
+
# Finish wandb run
|
430 |
+
wandb.finish()
|
431 |
+
|
432 |
+
return model
|
433 |
+
|
434 |
+
|
435 |
+
def evaluate_model(model, test_loader, dataset):
|
436 |
+
"""
|
437 |
+
Evaluate the model and generate detailed metrics
|
438 |
+
|
439 |
+
Args:
|
440 |
+
model (nn.Module): Trained PyTorch model
|
441 |
+
test_loader (DataLoader): Test data loader
|
442 |
+
dataset (EmotionDataset): Dataset for class names
|
443 |
+
"""
|
444 |
+
model.eval()
|
445 |
+
all_preds = []
|
446 |
+
all_labels = []
|
447 |
+
|
448 |
+
with torch.no_grad():
|
449 |
+
for features, labels in test_loader:
|
450 |
+
outputs = model(features)
|
451 |
+
_, predicted = torch.max(outputs, 1)
|
452 |
+
all_preds.extend(predicted.numpy())
|
453 |
+
all_labels.extend(labels.numpy())
|
454 |
+
|
455 |
+
# Classification Report
|
456 |
+
class_names = dataset.get_class_names()
|
457 |
+
print("\nClassification Report:")
|
458 |
+
print(classification_report(all_labels, all_preds, target_names=class_names))
|
459 |
+
|
460 |
+
# Confusion Matrix Visualization
|
461 |
+
cm = confusion_matrix(all_labels, all_preds)
|
462 |
+
plt.figure(figsize=(10, 8))
|
463 |
+
sns.heatmap(
|
464 |
+
cm, annot=True, fmt="d", xticklabels=class_names, yticklabels=class_names
|
465 |
+
)
|
466 |
+
plt.title("Confusion Matrix")
|
467 |
+
plt.xlabel("Predicted")
|
468 |
+
plt.ylabel("Actual")
|
469 |
+
plt.tight_layout()
|
470 |
+
plt.savefig("confusion_matrix.png")
|
471 |
+
plt.close()
|
472 |
+
|
473 |
+
|
474 |
+
def main():
|
475 |
+
# Set random seed for reproducibility
|
476 |
+
torch.manual_seed(42)
|
477 |
+
np.random.seed(42)
|
478 |
+
|
479 |
+
# Data Preparation
|
480 |
+
features, labels = prepare_dataset(Config.DATA_DIR)
|
481 |
+
|
482 |
+
# Split data
|
483 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
484 |
+
features, labels, test_size=0.2, random_state=42
|
485 |
+
)
|
486 |
+
X_train, X_val, y_train, y_val = train_test_split(
|
487 |
+
X_train, y_train, test_size=0.2, random_state=42
|
488 |
+
)
|
489 |
+
|
490 |
+
# Create datasets
|
491 |
+
train_dataset = EmotionDataset(X_train, y_train)
|
492 |
+
val_dataset = EmotionDataset(X_val, y_val)
|
493 |
+
test_dataset = EmotionDataset(X_test, y_test)
|
494 |
+
|
495 |
+
# Data loaders
|
496 |
+
train_loader = DataLoader(train_dataset, batch_size=Config.BATCH_SIZE, shuffle=True)
|
497 |
+
val_loader = DataLoader(val_dataset, batch_size=Config.BATCH_SIZE)
|
498 |
+
test_loader = DataLoader(test_dataset, batch_size=Config.BATCH_SIZE)
|
499 |
+
|
500 |
+
# Model Initialization
|
501 |
+
model = HybridEmotionRecognitionModel(
|
502 |
+
input_dim=len(X_train[0]), num_classes=train_dataset.get_num_classes()
|
503 |
+
)
|
504 |
+
|
505 |
+
# Train Model
|
506 |
+
train_model(
|
507 |
+
model,
|
508 |
+
train_loader,
|
509 |
+
val_loader,
|
510 |
+
labels,
|
511 |
+
num_epochs=Config.NUM_EPOCHS,
|
512 |
+
)
|
513 |
+
|
514 |
+
# Evaluate Model
|
515 |
+
evaluate_model(model, test_loader, train_dataset)
|
516 |
+
|
517 |
+
|
518 |
+
if __name__ == "__main__":
|
519 |
+
main()
|