File size: 13,284 Bytes
be195f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
# pyre-unsafe
import copy
import torch
import torch.nn.functional as F
from transformers import AutoImageProcessor, Dinov2Config, Dinov2Model, SiglipImageProcessor, SiglipVisionConfig, SiglipVisionModel
from abc import ABC, abstractmethod
import torch.nn as nn


class ProcessorWrapper:
    def __init__(
        self,
        transform,
        height=378,
        width=378,
        image_mean=[0.48145466, 0.4578275, 0.40821073],
    ):
        self._crop_size = {
            "height": height,
            "width": width,
        }
        self._transforms = transform
        # print(transform)
        self.image_mean = image_mean

    @property
    def crop_size(self):
        return self._crop_size

    def preprocess(self, image, return_tensors="pt"):
        # Ensure image is a PIL Image
        output = {}
        output["pixel_values"] = [self._transforms(image)]
        return output


class BaseVisionTower(nn.Module):
    def __init__(self, vision_tower_name, args, delay_load=False):
        super().__init__()

        self.is_loaded = False
        self.args = args

        self.vision_tower_name = vision_tower_name
        self.select_layer = args.mm_vision_select_layer
        self.select_feature = getattr(args, "mm_vision_select_feature", "patch")
        self.unfreeze_mm_vision_tower = getattr(args, "unfreeze_mm_vision_tower", False)
        self.delay_load = delay_load

    @abstractmethod
    def load_model(self, device_map=None):
        raise NotImplementedError("Subclasses must implement load_model")

    @abstractmethod
    def _forward(self, images):
        raise NotImplementedError("Subclasses must implement forward")

    def forward(self, images):
        if type(images) is list:
            image_features = [self._forward(image.unsqueeze(0)) for image in images]
        else:
            image_features = self._forward(images)

        return image_features

    @property
    def dummy_feature(self):
        return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)

    @property
    def dtype(self):
        # Dynamically infer the dtype from the first parameter, if not explicitly specified
        if hasattr(self.vision_tower, "dtype"):
            return self.vision_tower.dtype
        else:
            params = list(self.vision_tower.parameters())
            return (
                params[0].dtype if len(params) > 0 else torch.float32
            )  # Default to torch.float32 if no parameters

    @property
    def device(self):
        # Dynamically infer the device from the first parameter, if not explicitly specified
        if hasattr(self.vision_tower, "device"):
            return self.vision_tower.device
        else:
            params = list(self.vision_tower.parameters())
            return (
                params[0].device if len(params) > 0 else torch.device("cpu")
            )  # Default to CPU if no parameters

    @property
    def config(self):
        if self.is_loaded:
            return self.vision_tower.config
        else:
            return self.cfg_only

    @property
    def hidden_size(self):
        try:
            return self.config.hidden_size
        except:
            return self._hidden_size

    @property
    def image_size(self):  # resolution
        # return self.config.image_size
        try:
            return self.config.image_size
        except:
            return self._image_size

    @property
    def patch_size(self):
        # return self.config.patch_size
        try:
            return self.config.patch_size
        except:
            return self._patch_size

    @property
    def num_patches_per_side(self):
        if self._interp_size is not None:
            return int(self._interp_size**0.5)
        try:
            return self.image_size // self.patch_size
        except:
            return self._num_patches_per_side

    @property
    def num_patches(self):
        if self._interp_size is not None:
            return self._interp_size
        try:
            return self.num_patches_per_side**2
        except:
            return self._num_patches


class DinoVisionTower(BaseVisionTower):
    def __init__(self, vision_tower, args, delay_load=False):
        super(DinoVisionTower, self).__init__(vision_tower, args, delay_load)

        model_path = "facebook/dinov2-giant"
        base_model_name, res, interp = model_path, 378, 576
        self._vision_tower_name = vision_tower
        self.vision_tower_name = base_model_name
        self._image_size = res
        self._interp_size = interp
        self._patch_size = 14  # default patch size

        if not self.delay_load:
            self.load_model()
        else:
            self.cfg_only = Dinov2Config.from_pretrained(self.vision_tower_name)

    def load_model(self, device_map=None):

        self.vision_tower = Dinov2Model.from_pretrained(self.vision_tower_name)
        """ValueError: Dinov2Model does not support `device_map='auto'`. To implement support, the model class needs to implement the `_no_split_modules` attribute."""
        self.vision_tower._no_split_modules = ["Dinov2SwiGLUFFN"]

        _image_size = self.vision_tower.config.image_size
        if self._image_size is None:
            self._image_size = _image_size

        # increase shortest edge to prevent edge case crops
        default_shortest_ratio = 8 / 7  # 224/256
        # shortest_edge = int(default_shortest_ratio * self._image_size)
        shortest_edge = self._image_size

        processor = AutoImageProcessor.from_pretrained(
            self.vision_tower_name,
            crop_size=dict(height=self._image_size, width=self._image_size),
            size=dict(shortest_edge=shortest_edge),
        )
        self.image_processor = processor

        # Assign the output channels of the projection convolution as the hidden size
        self._hidden_size = (
            self.vision_tower.embeddings.patch_embeddings.projection.out_channels
        )
        # Assign the first value of the stride of the projection convolution as the patch size
        self._patch_size = (
            self.vision_tower.embeddings.patch_embeddings.projection.stride[0]
        )

        # print(self._hidden_size, self._patch_size)

        self.vision_tower.requires_grad_(self.unfreeze_mm_vision_tower)
        self.is_loaded = True

    @property
    def image_size(self):
        return self._image_size

    def feature_select(self, outputs):
        sequence_output = outputs[
            "last_hidden_state"
        ]  # batch_size, sequence_length, hidden_size

        if self.select_feature == "cls_patch":
            image_features = sequence_output
        elif self.select_feature == "patch":
            image_features = sequence_output[:, 1:]
        elif self.select_feature == "cls":
            image_features = sequence_output[:, 0]
        else:
            raise ValueError(f"Unexpected select feature: {self.select_feature}")
        return image_features

    def interpolate(self, image_features):
        if self._interp_size is None:
            return image_features

        b, num_tokens, dim = image_features.shape

        if num_tokens != self.num_patches:
            target_h = target_w = int(self._interp_size**0.5)
            h = w = int(num_tokens**0.5)

            image_features = image_features.view(b, h, w, dim)
            image_features = image_features.permute(0, 3, 1, 2).contiguous()

            image_features = F.interpolate(
                image_features.to(torch.float32),
                size=(target_h, target_w),
                mode="bilinear",
                align_corners=False,
            ).to(image_features.dtype)

            # Permute the dimensions back to (b, target_h, target_w, dim)
            image_features = image_features.permute(0, 2, 3, 1).contiguous()

            # Flatten the spatial dimensions (target_h, target_w) into a single dimension
            image_features = image_features.flatten(1, 2)

        return image_features

    def _forward(self, images):
        # logger.warning(f"images shape: {images.shape}")
        with torch.set_grad_enabled(self.unfreeze_mm_vision_tower):
            image_forward_outs = self.vision_tower.forward(
                images.to(device=self.device, dtype=self.dtype)
            )
            # logger.warning(f"image_forward_outs shape: {image_forward_outs['last_hidden_state'].shape}")
            image_features = self.feature_select(image_forward_outs).to(images.dtype)
            # logger.warning(f"image_features shape: {image_features.shape}")
            interp_features = self.interpolate(image_features)
            # logger.warning(f"interp_features shape: {interp_features.shape}")
            return interp_features

    @property
    def num_patches_per_side(self):
        return int(self.num_patches**0.5)

    @property
    def num_patches(self):
        if self._interp_size is None:
            return (self._image_size // self._patch_size) ** 2
        else:
            return self._interp_size
        
        
# from .siglip_encoder import SiglipVisionTower
class SiglipVisionTower(BaseVisionTower):
    def __init__(self, vision_tower_name, args, delay_load=False):
        super(SiglipVisionTower, self).__init__(vision_tower_name, args, delay_load)
        
        model_path = "google/siglip-so400m-patch14-384"
        base_model_name, res, interp = model_path, 384, 576
        self.vision_tower_name = base_model_name
        self._image_size = res if res is not None else 512
        self._interp_size = interp
        if not self.delay_load:
            self.load_model()
        elif self.unfreeze_mm_vision_tower:
            self.load_model()
        else:
            self._hidden_size = 1152

    def load_model(self, device_map=None):
        self.vision_model = "siglip"
        # clip_model, processor = create_model_from_pretrained(self.vision_tower_name)
        self.vision_tower = SiglipVisionModel.from_pretrained(self.vision_tower_name)

        # self.vision_tower = clip_model.visual.trunk
        self.vision_tower.output_tokens = True

        self._hidden_size = self.vision_tower.config.hidden_size
        self._image_size = self.vision_tower.config.image_size
        self._patch_size = self.vision_tower.config.patch_size
        self.image_processor = SiglipImageProcessor.from_pretrained(
            self.vision_tower_name
        )

        self.vision_tower.requires_grad_(self.unfreeze_mm_vision_tower)
        self.is_loaded = True

    def interpolate(self, image_features):
        if self._interp_size is None:
            return image_features

        b, num_tokens, dim = image_features.shape

        if num_tokens != self.num_patches:
            target_h = target_w = int(self._interp_size**0.5)
            h = w = int(num_tokens**0.5)

            image_features = image_features.view(b, h, w, dim)
            image_features = image_features.permute(0, 3, 1, 2).contiguous()

            image_features = F.interpolate(
                image_features.to(torch.float32),
                size=(target_h, target_w),
                mode="bilinear",
                align_corners=False,
            ).to(image_features.dtype)

            # Permute the dimensions back to (b, target_h, target_w, dim)
            image_features = image_features.permute(0, 2, 3, 1).contiguous()

            # Flatten the spatial dimensions (target_h, target_w) into a single dimension
            image_features = image_features.flatten(1, 2)

        return image_features

    def _forward(self, images, interpolate_token=576):
        with torch.set_grad_enabled(self.unfreeze_mm_vision_tower):
            image_features = self.vision_tower.forward(
                images.to(device=self.device, dtype=self.dtype),
                output_hidden_states=True,
            ).hidden_states[-1]
            interp_features = self.interpolate(image_features)
            return interp_features


def build_vision_tower_aux_list(vision_tower_cfg, **kwargs):
    vision_tower_aux_name_list = getattr(
        vision_tower_cfg,
        "mm_vision_tower_aux_list",
        getattr(vision_tower_cfg, "vision_tower_aux_list", None),
    )
    vision_tower_aux_token_len_list = getattr(
        vision_tower_cfg,
        "mm_vision_tower_aux_token_len_list",
        getattr(vision_tower_cfg, "vision_tower_aux_token_len_list", None),
    )
    vision_tower_aux_list = []
    for vision_tower_aux_name, vision_tower_aux_token_len in zip(
        vision_tower_aux_name_list, vision_tower_aux_token_len_list
    ):
        config = copy.deepcopy(vision_tower_cfg)
        vision_tower_aux_name += "-interp{}".format(vision_tower_aux_token_len)
        if "siglip" in vision_tower_aux_name.lower():
            vision_tower_aux_list.append(
                SiglipVisionTower(vision_tower_aux_name, args=config, **kwargs)
            )

        # SSL-based Vision Towers
        elif "dinov2" in vision_tower_aux_name.lower():
            vision_tower_aux_list.append(
                DinoVisionTower(vision_tower_aux_name, args=config, **kwargs)
            )
        else:
            raise ValueError(f"Unknown vision tower: {vision_tower_aux_name}")
    return vision_tower_aux_list