dminhvu02 commited on
Commit
e4415e2
·
verified ·
1 Parent(s): ee68f3e

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ ---
4
+ ## Training procedure
5
+
6
+ ### Framework versions
7
+
8
+ - PEFT 0.4.0
9
+
10
+ - PEFT 0.4.0
adapter_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_mapping": null,
3
+ "base_model_name_or_path": "/model_zoo/Vivid-7B-base",
4
+ "bias": "none",
5
+ "fan_in_fan_out": false,
6
+ "inference_mode": true,
7
+ "init_lora_weights": true,
8
+ "layers_pattern": null,
9
+ "layers_to_transform": null,
10
+ "lora_alpha": 64,
11
+ "lora_dropout": 0.05,
12
+ "modules_to_save": null,
13
+ "peft_type": "LORA",
14
+ "r": 32,
15
+ "revision": null,
16
+ "target_modules": [
17
+ "o_proj",
18
+ "q_proj",
19
+ "k_proj",
20
+ "gate_proj",
21
+ "down_proj",
22
+ "v_proj",
23
+ "up_proj"
24
+ ],
25
+ "task_type": "CAUSAL_LM"
26
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b85634ff64cb7542cf4817964b530b79171fbdd23435bc9352367fa68a0e42a
3
+ size 167927754
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff14197a580bc8d117bf3c16e2eaab8aaded005ee90618bca3a0a563439295af
3
+ size 167832688
config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/model_zoo/Vivid-7B-base",
3
+ "architectures": [
4
+ "LlavaMistralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bert_type": "raw_bert_layer:12",
8
+ "bos_token_id": 1,
9
+ "compress_type": "mean",
10
+ "eos_token_id": 2,
11
+ "freeze_mm_mlp_adapter": false,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 4096,
14
+ "image_aspect_ratio": "pad",
15
+ "image_grid_pinpoints": null,
16
+ "image_processor": "./llamavid/processor/clip-patch14-224",
17
+ "initializer_range": 0.02,
18
+ "intermediate_size": 14336,
19
+ "max_position_embeddings": 32768,
20
+ "max_token": 4096,
21
+ "mm_hidden_size": 1024,
22
+ "mm_projector_type": "mlp2x_gelu",
23
+ "mm_use_im_patch_token": false,
24
+ "mm_use_im_start_end": false,
25
+ "mm_vision_select_feature": "patch",
26
+ "mm_vision_select_layer": -2,
27
+ "mm_vision_tower": "/model_zoo/openai-clip-vit-large-patch14",
28
+ "model_path": "/content/Vivid-7B-Instruct-Lora",
29
+ "model_type": "mistral",
30
+ "num_attention_heads": 32,
31
+ "num_hidden_layers": 32,
32
+ "num_key_value_heads": 8,
33
+ "num_query": 32,
34
+ "pretrain_mm_mlp_adapter": "/content/Vivid-7B-PT/mm_projector.bin",
35
+ "rms_norm_eps": 1e-05,
36
+ "rope_theta": 10000.0,
37
+ "sliding_window": 4096,
38
+ "tie_word_embeddings": false,
39
+ "torch_dtype": "float16",
40
+ "transformers_version": "4.38.2",
41
+ "tune_mm_mlp_adapter": false,
42
+ "use_cache": false,
43
+ "use_mm_proj": true,
44
+ "vocab_size": 48384
45
+ }
global_step150/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57262f60d6570023af26a520a89ac40f01d700d442a4f11a3d8fd45b0e13e8df
3
+ size 6931872192
global_step150/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee8f5beb7c20bf85bed9e3f057f9524c5964e5c1773ffa4ff7387c20c1ca0875
3
+ size 1155894712
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step150
non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f70073b0da2fa52b0b7936fed4340dee3733ab45b897d7919c3be505bfefdd8a
3
+ size 987789762
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f30c8c68b943b04231e947d488a0c4b71b56413e2f7f06b32c4e8377ce1df6a
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce76126167d620de50ef95ce12b983f6efa02e9a5112000d0901e807c78c2484
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<unk>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d88bdadaa2a065aa7c6e18a4b5999ce4c76cec14d9fea882102e7b4931d7ef0
3
+ size 779539
tokenizer_config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "additional_special_tokens": [],
32
+ "bos_token": "<s>",
33
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{{ bos_token }}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '</s>'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
34
+ "clean_up_tokenization_spaces": false,
35
+ "eos_token": "</s>",
36
+ "legacy": true,
37
+ "model_max_length": 4096,
38
+ "pad_token": "<unk>",
39
+ "padding_side": "right",
40
+ "sp_model_kwargs": {},
41
+ "spaces_between_special_tokens": false,
42
+ "tokenizer_class": "LlamaTokenizer",
43
+ "unk_token": "<unk>",
44
+ "use_default_system_prompt": false
45
+ }
trainer_state.json ADDED
@@ -0,0 +1,1071 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.33531260915123995,
5
+ "eval_steps": 500,
6
+ "global_step": 150,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "grad_norm": 0.7522330163029802,
14
+ "learning_rate": 7.142857142857143e-06,
15
+ "loss": 1.3831,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0,
20
+ "grad_norm": 0.7473994784323043,
21
+ "learning_rate": 1.4285714285714285e-05,
22
+ "loss": 1.3916,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.01,
27
+ "grad_norm": 0.70544460641196,
28
+ "learning_rate": 2.1428571428571428e-05,
29
+ "loss": 1.4248,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.01,
34
+ "grad_norm": 0.5834904606723813,
35
+ "learning_rate": 2.857142857142857e-05,
36
+ "loss": 1.4045,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.01,
41
+ "grad_norm": 0.8295213706761098,
42
+ "learning_rate": 3.571428571428572e-05,
43
+ "loss": 1.3918,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.01,
48
+ "grad_norm": 0.8133546220957368,
49
+ "learning_rate": 4.2857142857142856e-05,
50
+ "loss": 1.3865,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.02,
55
+ "grad_norm": 0.7903446421142379,
56
+ "learning_rate": 5e-05,
57
+ "loss": 1.373,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.02,
62
+ "grad_norm": 0.6811759259942566,
63
+ "learning_rate": 5.714285714285714e-05,
64
+ "loss": 1.3682,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.02,
69
+ "grad_norm": 0.6292547023357415,
70
+ "learning_rate": 6.428571428571429e-05,
71
+ "loss": 1.3916,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.02,
76
+ "grad_norm": 0.5931255904191401,
77
+ "learning_rate": 7.142857142857143e-05,
78
+ "loss": 1.3833,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.02,
83
+ "grad_norm": 0.6447974541785289,
84
+ "learning_rate": 7.857142857142858e-05,
85
+ "loss": 1.4023,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.03,
90
+ "grad_norm": 0.5941331466143945,
91
+ "learning_rate": 8.571428571428571e-05,
92
+ "loss": 1.3423,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.03,
97
+ "grad_norm": 0.6603903337024011,
98
+ "learning_rate": 9.285714285714286e-05,
99
+ "loss": 1.3762,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.03,
104
+ "grad_norm": 0.5633045289970319,
105
+ "learning_rate": 0.0001,
106
+ "loss": 1.3843,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.03,
111
+ "grad_norm": 0.5277710229216985,
112
+ "learning_rate": 9.999868398131282e-05,
113
+ "loss": 1.3872,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.04,
118
+ "grad_norm": 0.5589957310018021,
119
+ "learning_rate": 9.999473599452745e-05,
120
+ "loss": 1.3452,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.04,
125
+ "grad_norm": 0.5000831179822082,
126
+ "learning_rate": 9.99881562474689e-05,
127
+ "loss": 1.3813,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.04,
132
+ "grad_norm": 0.5290519156012868,
133
+ "learning_rate": 9.997894508649996e-05,
134
+ "loss": 1.3762,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.04,
139
+ "grad_norm": 0.519496248745277,
140
+ "learning_rate": 9.996710299650301e-05,
141
+ "loss": 1.3706,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.04,
146
+ "grad_norm": 0.47116309957086233,
147
+ "learning_rate": 9.995263060085454e-05,
148
+ "loss": 1.344,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.05,
153
+ "grad_norm": 0.4762611988791945,
154
+ "learning_rate": 9.993552866139229e-05,
155
+ "loss": 1.3513,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.05,
160
+ "grad_norm": 0.4669268035616973,
161
+ "learning_rate": 9.99157980783751e-05,
162
+ "loss": 1.3357,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.05,
167
+ "grad_norm": 0.46010212813136436,
168
+ "learning_rate": 9.989343989043563e-05,
169
+ "loss": 1.3391,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.05,
174
+ "grad_norm": 0.4608157209685965,
175
+ "learning_rate": 9.98684552745256e-05,
176
+ "loss": 1.3591,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.06,
181
+ "grad_norm": 0.4483237749946448,
182
+ "learning_rate": 9.984084554585387e-05,
183
+ "loss": 1.3433,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.06,
188
+ "grad_norm": 0.4491711395465447,
189
+ "learning_rate": 9.98106121578172e-05,
190
+ "loss": 1.3616,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.06,
195
+ "grad_norm": 0.42807282609895003,
196
+ "learning_rate": 9.977775670192371e-05,
197
+ "loss": 1.3342,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.06,
202
+ "grad_norm": 0.4236536126545817,
203
+ "learning_rate": 9.97422809077092e-05,
204
+ "loss": 1.3572,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.06,
209
+ "grad_norm": 0.4237881873453837,
210
+ "learning_rate": 9.970418664264595e-05,
211
+ "loss": 1.3394,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.07,
216
+ "grad_norm": 0.4363640797964494,
217
+ "learning_rate": 9.96634759120446e-05,
218
+ "loss": 1.3611,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.07,
223
+ "grad_norm": 0.3953629543521621,
224
+ "learning_rate": 9.962015085894838e-05,
225
+ "loss": 1.3208,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.07,
230
+ "grad_norm": 0.4092487417981463,
231
+ "learning_rate": 9.957421376402051e-05,
232
+ "loss": 1.3457,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.07,
237
+ "grad_norm": 0.4026279934538214,
238
+ "learning_rate": 9.9525667045424e-05,
239
+ "loss": 1.344,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.08,
244
+ "grad_norm": 0.39575866758551026,
245
+ "learning_rate": 9.947451325869439e-05,
246
+ "loss": 1.3416,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.08,
251
+ "grad_norm": 0.40044778357348837,
252
+ "learning_rate": 9.942075509660527e-05,
253
+ "loss": 1.3181,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.08,
258
+ "grad_norm": 0.40607328352911176,
259
+ "learning_rate": 9.936439538902644e-05,
260
+ "loss": 1.321,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.08,
265
+ "grad_norm": 0.4080804869363711,
266
+ "learning_rate": 9.930543710277509e-05,
267
+ "loss": 1.3423,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.08,
272
+ "grad_norm": 0.39208662642207626,
273
+ "learning_rate": 9.924388334145943e-05,
274
+ "loss": 1.3333,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.09,
279
+ "grad_norm": 0.4056602363153877,
280
+ "learning_rate": 9.91797373453155e-05,
281
+ "loss": 1.3521,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.09,
286
+ "grad_norm": 0.40133586130843213,
287
+ "learning_rate": 9.911300249103645e-05,
288
+ "loss": 1.3284,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.09,
293
+ "grad_norm": 0.3839921181227527,
294
+ "learning_rate": 9.904368229159493e-05,
295
+ "loss": 1.334,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.09,
300
+ "grad_norm": 0.37819843842451634,
301
+ "learning_rate": 9.897178039605802e-05,
302
+ "loss": 1.3201,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.1,
307
+ "grad_norm": 0.38535218746253924,
308
+ "learning_rate": 9.889730058939528e-05,
309
+ "loss": 1.3418,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.1,
314
+ "grad_norm": 0.3816398827811328,
315
+ "learning_rate": 9.88202467922794e-05,
316
+ "loss": 1.292,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.1,
321
+ "grad_norm": 0.3872171757684603,
322
+ "learning_rate": 9.874062306087982e-05,
323
+ "loss": 1.3086,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.1,
328
+ "grad_norm": 0.40255942917819887,
329
+ "learning_rate": 9.865843358664932e-05,
330
+ "loss": 1.356,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.11,
335
+ "grad_norm": 0.38408063484536253,
336
+ "learning_rate": 9.857368269610324e-05,
337
+ "loss": 1.3123,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.11,
342
+ "grad_norm": 0.3858660663689368,
343
+ "learning_rate": 9.848637485059183e-05,
344
+ "loss": 1.3228,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.11,
349
+ "grad_norm": 0.3733195606949192,
350
+ "learning_rate": 9.839651464606529e-05,
351
+ "loss": 1.3191,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.11,
356
+ "grad_norm": 0.3843895669282248,
357
+ "learning_rate": 9.830410681283202e-05,
358
+ "loss": 1.3137,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.11,
363
+ "grad_norm": 0.3839890456700812,
364
+ "learning_rate": 9.82091562153094e-05,
365
+ "loss": 1.3037,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.12,
370
+ "grad_norm": 0.3835789656095749,
371
+ "learning_rate": 9.811166785176784e-05,
372
+ "loss": 1.3281,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.12,
377
+ "grad_norm": 0.3742526616293116,
378
+ "learning_rate": 9.801164685406771e-05,
379
+ "loss": 1.3083,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.12,
384
+ "grad_norm": 0.3896917243786738,
385
+ "learning_rate": 9.790909848738906e-05,
386
+ "loss": 1.3142,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.12,
391
+ "grad_norm": 0.37476225815080133,
392
+ "learning_rate": 9.780402814995459e-05,
393
+ "loss": 1.2991,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.13,
398
+ "grad_norm": 0.3715519529394886,
399
+ "learning_rate": 9.769644137274538e-05,
400
+ "loss": 1.2986,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.13,
405
+ "grad_norm": 0.3766009323599998,
406
+ "learning_rate": 9.758634381920981e-05,
407
+ "loss": 1.3054,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.13,
412
+ "grad_norm": 0.38112908922611866,
413
+ "learning_rate": 9.74737412849654e-05,
414
+ "loss": 1.2891,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.13,
419
+ "grad_norm": 0.37814911656520694,
420
+ "learning_rate": 9.735863969749372e-05,
421
+ "loss": 1.3025,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.13,
426
+ "grad_norm": 0.3825181116798945,
427
+ "learning_rate": 9.724104511582838e-05,
428
+ "loss": 1.3152,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.14,
433
+ "grad_norm": 0.37912087213705015,
434
+ "learning_rate": 9.712096373023604e-05,
435
+ "loss": 1.2844,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.14,
440
+ "grad_norm": 0.3776600267484215,
441
+ "learning_rate": 9.69984018618906e-05,
442
+ "loss": 1.3042,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.14,
447
+ "grad_norm": 0.3928544712245226,
448
+ "learning_rate": 9.687336596254044e-05,
449
+ "loss": 1.3259,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.14,
454
+ "grad_norm": 0.3652188942778873,
455
+ "learning_rate": 9.674586261416873e-05,
456
+ "loss": 1.2854,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.15,
461
+ "grad_norm": 0.3846903345562418,
462
+ "learning_rate": 9.66158985286471e-05,
463
+ "loss": 1.3091,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.15,
468
+ "grad_norm": 0.3872756941099026,
469
+ "learning_rate": 9.648348054738208e-05,
470
+ "loss": 1.2981,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.15,
475
+ "grad_norm": 0.38743186857828676,
476
+ "learning_rate": 9.634861564095524e-05,
477
+ "loss": 1.303,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.15,
482
+ "grad_norm": 0.39711005882387096,
483
+ "learning_rate": 9.621131090875603e-05,
484
+ "loss": 1.313,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.15,
489
+ "grad_norm": 0.3775435690594975,
490
+ "learning_rate": 9.607157357860823e-05,
491
+ "loss": 1.2766,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.16,
496
+ "grad_norm": 0.3875463212418074,
497
+ "learning_rate": 9.59294110063893e-05,
498
+ "loss": 1.3157,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.16,
503
+ "grad_norm": 0.3858636973285557,
504
+ "learning_rate": 9.578483067564335e-05,
505
+ "loss": 1.2834,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.16,
510
+ "grad_norm": 0.37541703932578996,
511
+ "learning_rate": 9.563784019718703e-05,
512
+ "loss": 1.2957,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.16,
517
+ "grad_norm": 0.38113820507589535,
518
+ "learning_rate": 9.548844730870901e-05,
519
+ "loss": 1.2932,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.17,
524
+ "grad_norm": 0.38509417483302427,
525
+ "learning_rate": 9.533665987436263e-05,
526
+ "loss": 1.311,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.17,
531
+ "grad_norm": 0.36678005983919304,
532
+ "learning_rate": 9.518248588435185e-05,
533
+ "loss": 1.2852,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.17,
538
+ "grad_norm": 0.3875959550686585,
539
+ "learning_rate": 9.502593345451078e-05,
540
+ "loss": 1.2961,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.17,
545
+ "grad_norm": 0.3690516151813626,
546
+ "learning_rate": 9.486701082587634e-05,
547
+ "loss": 1.2837,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.17,
552
+ "grad_norm": 0.37636909155427106,
553
+ "learning_rate": 9.470572636425449e-05,
554
+ "loss": 1.3242,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.18,
559
+ "grad_norm": 0.3723573615312267,
560
+ "learning_rate": 9.454208855977986e-05,
561
+ "loss": 1.2837,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.18,
566
+ "grad_norm": 0.3849981556406106,
567
+ "learning_rate": 9.437610602646878e-05,
568
+ "loss": 1.2944,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.18,
573
+ "grad_norm": 0.3778470741048999,
574
+ "learning_rate": 9.420778750176588e-05,
575
+ "loss": 1.2871,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.18,
580
+ "grad_norm": 0.37645381040425563,
581
+ "learning_rate": 9.403714184608411e-05,
582
+ "loss": 1.3088,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.19,
587
+ "grad_norm": 0.397847096161663,
588
+ "learning_rate": 9.386417804233835e-05,
589
+ "loss": 1.3196,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.19,
594
+ "grad_norm": 0.39589602529348583,
595
+ "learning_rate": 9.368890519547251e-05,
596
+ "loss": 1.2812,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.19,
601
+ "grad_norm": 0.3755562583506324,
602
+ "learning_rate": 9.351133253198028e-05,
603
+ "loss": 1.2759,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.19,
608
+ "grad_norm": 0.3757465002070439,
609
+ "learning_rate": 9.333146939941938e-05,
610
+ "loss": 1.2949,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.19,
615
+ "grad_norm": 0.38318152261822297,
616
+ "learning_rate": 9.314932526591956e-05,
617
+ "loss": 1.2795,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.2,
622
+ "grad_norm": 0.3756550651404947,
623
+ "learning_rate": 9.296490971968415e-05,
624
+ "loss": 1.2651,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.2,
629
+ "grad_norm": 0.38942044400837683,
630
+ "learning_rate": 9.277823246848536e-05,
631
+ "loss": 1.2903,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.2,
636
+ "grad_norm": 0.37348810668822124,
637
+ "learning_rate": 9.258930333915324e-05,
638
+ "loss": 1.2612,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.2,
643
+ "grad_norm": 0.3832983019734946,
644
+ "learning_rate": 9.239813227705838e-05,
645
+ "loss": 1.2805,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.21,
650
+ "grad_norm": 0.37762671923250346,
651
+ "learning_rate": 9.220472934558837e-05,
652
+ "loss": 1.3,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.21,
657
+ "grad_norm": 0.3791093875126196,
658
+ "learning_rate": 9.20091047256181e-05,
659
+ "loss": 1.2925,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.21,
664
+ "grad_norm": 0.383463697649199,
665
+ "learning_rate": 9.181126871497378e-05,
666
+ "loss": 1.2815,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.21,
671
+ "grad_norm": 0.379130797624887,
672
+ "learning_rate": 9.16112317278909e-05,
673
+ "loss": 1.2805,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.21,
678
+ "grad_norm": 0.3816039801864187,
679
+ "learning_rate": 9.140900429446602e-05,
680
+ "loss": 1.2825,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.22,
685
+ "grad_norm": 0.37629435581707915,
686
+ "learning_rate": 9.120459706010233e-05,
687
+ "loss": 1.2896,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.22,
692
+ "grad_norm": 0.38890563473703343,
693
+ "learning_rate": 9.099802078494948e-05,
694
+ "loss": 1.2734,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.22,
699
+ "grad_norm": 0.3782158636576143,
700
+ "learning_rate": 9.078928634333698e-05,
701
+ "loss": 1.2803,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.22,
706
+ "grad_norm": 0.38350433679936774,
707
+ "learning_rate": 9.057840472320192e-05,
708
+ "loss": 1.2639,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.23,
713
+ "grad_norm": 0.38940074349705917,
714
+ "learning_rate": 9.036538702551036e-05,
715
+ "loss": 1.2732,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.23,
720
+ "grad_norm": 0.39603306187884135,
721
+ "learning_rate": 9.015024446367315e-05,
722
+ "loss": 1.2976,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.23,
727
+ "grad_norm": 0.39112427722222776,
728
+ "learning_rate": 8.993298836295556e-05,
729
+ "loss": 1.2588,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.23,
734
+ "grad_norm": 0.3962255296124105,
735
+ "learning_rate": 8.971363015988114e-05,
736
+ "loss": 1.2915,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.23,
741
+ "grad_norm": 0.3858473392543198,
742
+ "learning_rate": 8.949218140162966e-05,
743
+ "loss": 1.2695,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.24,
748
+ "grad_norm": 0.3820634901255279,
749
+ "learning_rate": 8.926865374542928e-05,
750
+ "loss": 1.2876,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.24,
755
+ "grad_norm": 0.40421307595226363,
756
+ "learning_rate": 8.904305895794292e-05,
757
+ "loss": 1.2817,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.24,
762
+ "grad_norm": 0.3716456005592202,
763
+ "learning_rate": 8.881540891464879e-05,
764
+ "loss": 1.2761,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.24,
769
+ "grad_norm": 0.3815567099868862,
770
+ "learning_rate": 8.858571559921538e-05,
771
+ "loss": 1.2644,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.25,
776
+ "grad_norm": 0.3848695348441116,
777
+ "learning_rate": 8.835399110287045e-05,
778
+ "loss": 1.2622,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.25,
783
+ "grad_norm": 0.38017284820864067,
784
+ "learning_rate": 8.812024762376477e-05,
785
+ "loss": 1.2642,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.25,
790
+ "grad_norm": 0.3779202181266027,
791
+ "learning_rate": 8.788449746632977e-05,
792
+ "loss": 1.2766,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.25,
797
+ "grad_norm": 0.39015638614586473,
798
+ "learning_rate": 8.764675304062993e-05,
799
+ "loss": 1.2881,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.25,
804
+ "grad_norm": 0.39447312823941305,
805
+ "learning_rate": 8.740702686170955e-05,
806
+ "loss": 1.2776,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.26,
811
+ "grad_norm": 0.38606430769475053,
812
+ "learning_rate": 8.716533154893389e-05,
813
+ "loss": 1.283,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.26,
818
+ "grad_norm": 0.37710007527264683,
819
+ "learning_rate": 8.692167982532486e-05,
820
+ "loss": 1.2754,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.26,
825
+ "grad_norm": 0.3953761864482322,
826
+ "learning_rate": 8.667608451689134e-05,
827
+ "loss": 1.2891,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.26,
832
+ "grad_norm": 0.38041030780699725,
833
+ "learning_rate": 8.642855855195394e-05,
834
+ "loss": 1.2717,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.27,
839
+ "grad_norm": 0.37534026330530307,
840
+ "learning_rate": 8.617911496046446e-05,
841
+ "loss": 1.2861,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.27,
846
+ "grad_norm": 0.3642851567224028,
847
+ "learning_rate": 8.592776687332002e-05,
848
+ "loss": 1.2546,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.27,
853
+ "grad_norm": 0.37390620756705745,
854
+ "learning_rate": 8.567452752167182e-05,
855
+ "loss": 1.2583,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.27,
860
+ "grad_norm": 0.37970332189538375,
861
+ "learning_rate": 8.54194102362286e-05,
862
+ "loss": 1.2827,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.27,
867
+ "grad_norm": 0.3873078508435452,
868
+ "learning_rate": 8.516242844655499e-05,
869
+ "loss": 1.2708,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.28,
874
+ "grad_norm": 0.38706228040025265,
875
+ "learning_rate": 8.490359568036446e-05,
876
+ "loss": 1.269,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 0.28,
881
+ "grad_norm": 0.3745301218341843,
882
+ "learning_rate": 8.464292556280733e-05,
883
+ "loss": 1.2434,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 0.28,
888
+ "grad_norm": 0.38170858987166395,
889
+ "learning_rate": 8.43804318157534e-05,
890
+ "loss": 1.2456,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 0.28,
895
+ "grad_norm": 0.3735646632404992,
896
+ "learning_rate": 8.411612825706977e-05,
897
+ "loss": 1.2573,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 0.29,
902
+ "grad_norm": 0.4099110289018266,
903
+ "learning_rate": 8.385002879989328e-05,
904
+ "loss": 1.2915,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 0.29,
909
+ "grad_norm": 0.3877538310898807,
910
+ "learning_rate": 8.35821474518983e-05,
911
+ "loss": 1.2793,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 0.29,
916
+ "grad_norm": 0.3902454161481885,
917
+ "learning_rate": 8.33124983145592e-05,
918
+ "loss": 1.2683,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 0.29,
923
+ "grad_norm": 0.38878925776724954,
924
+ "learning_rate": 8.304109558240815e-05,
925
+ "loss": 1.2417,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 0.3,
930
+ "grad_norm": 0.39723877066251073,
931
+ "learning_rate": 8.276795354228786e-05,
932
+ "loss": 1.2751,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 0.3,
937
+ "grad_norm": 0.38395165663929565,
938
+ "learning_rate": 8.249308657259943e-05,
939
+ "loss": 1.2576,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 0.3,
944
+ "grad_norm": 0.39643029338267877,
945
+ "learning_rate": 8.221650914254566e-05,
946
+ "loss": 1.2742,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 0.3,
951
+ "grad_norm": 0.39444322211869104,
952
+ "learning_rate": 8.193823581136918e-05,
953
+ "loss": 1.2671,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 0.3,
958
+ "grad_norm": 0.3941951730886792,
959
+ "learning_rate": 8.165828122758615e-05,
960
+ "loss": 1.2612,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 0.31,
965
+ "grad_norm": 0.3877727475185371,
966
+ "learning_rate": 8.137666012821514e-05,
967
+ "loss": 1.2441,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 0.31,
972
+ "grad_norm": 0.40860172723134963,
973
+ "learning_rate": 8.109338733800132e-05,
974
+ "loss": 1.2839,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 0.31,
979
+ "grad_norm": 0.39465054288851986,
980
+ "learning_rate": 8.08084777686361e-05,
981
+ "loss": 1.2595,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 0.31,
986
+ "grad_norm": 0.38699274061736677,
987
+ "learning_rate": 8.052194641797217e-05,
988
+ "loss": 1.2539,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 0.32,
993
+ "grad_norm": 0.3901027157370492,
994
+ "learning_rate": 8.023380836923405e-05,
995
+ "loss": 1.269,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 0.32,
1000
+ "grad_norm": 0.3818216948779056,
1001
+ "learning_rate": 7.994407879022396e-05,
1002
+ "loss": 1.2632,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 0.32,
1007
+ "grad_norm": 0.364402831939757,
1008
+ "learning_rate": 7.965277293252353e-05,
1009
+ "loss": 1.2329,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 0.32,
1014
+ "grad_norm": 0.3815713950573408,
1015
+ "learning_rate": 7.935990613069086e-05,
1016
+ "loss": 1.2734,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 0.32,
1021
+ "grad_norm": 0.370245164697694,
1022
+ "learning_rate": 7.906549380145329e-05,
1023
+ "loss": 1.2412,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 0.33,
1028
+ "grad_norm": 0.37768543350286454,
1029
+ "learning_rate": 7.876955144289592e-05,
1030
+ "loss": 1.2681,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 0.33,
1035
+ "grad_norm": 0.37390287320878,
1036
+ "learning_rate": 7.847209463364573e-05,
1037
+ "loss": 1.2668,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 0.33,
1042
+ "grad_norm": 0.37508076646147226,
1043
+ "learning_rate": 7.817313903205148e-05,
1044
+ "loss": 1.2566,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 0.33,
1049
+ "grad_norm": 0.3775081062527898,
1050
+ "learning_rate": 7.78727003753595e-05,
1051
+ "loss": 1.2434,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 0.34,
1056
+ "grad_norm": 0.3901559194494511,
1057
+ "learning_rate": 7.757079447888527e-05,
1058
+ "loss": 1.2351,
1059
+ "step": 150
1060
+ }
1061
+ ],
1062
+ "logging_steps": 1.0,
1063
+ "max_steps": 447,
1064
+ "num_input_tokens_seen": 0,
1065
+ "num_train_epochs": 1,
1066
+ "save_steps": 25,
1067
+ "total_flos": 2.222372777610969e+18,
1068
+ "train_batch_size": 16,
1069
+ "trial_name": null,
1070
+ "trial_params": null
1071
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68c32ad566d970e6f873dc4e4345382ecb94322012eeed8b360cdbecf9bc1dba
3
+ size 6584
zero_to_fp32.py ADDED
@@ -0,0 +1,592 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _has_callable(obj, fn):
252
+ attr = getattr(obj, fn, None)
253
+ return callable(attr)
254
+
255
+
256
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
257
+ param_shapes = zero_model_states[0].param_shapes
258
+
259
+ # Reconstruction protocol:
260
+ #
261
+ # XXX: document this
262
+
263
+ if debug:
264
+ for i in range(world_size):
265
+ for j in range(len(fp32_flat_groups[0])):
266
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
267
+
268
+ # XXX: memory usage doubles here (zero2)
269
+ num_param_groups = len(fp32_flat_groups[0])
270
+ merged_single_partition_of_fp32_groups = []
271
+ for i in range(num_param_groups):
272
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
273
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
274
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
275
+ avail_numel = sum(
276
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
277
+
278
+ if debug:
279
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
280
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
281
+ # not asserting if there is a mismatch due to possible padding
282
+ print(f"Have {avail_numel} numels to process.")
283
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
284
+
285
+ # params
286
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
287
+ # out-of-core computing solution
288
+ total_numel = 0
289
+ total_params = 0
290
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
291
+ offset = 0
292
+ avail_numel = full_single_fp32_vector.numel()
293
+ for name, shape in shapes.items():
294
+
295
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
296
+ total_numel += unpartitioned_numel
297
+ total_params += 1
298
+
299
+ if debug:
300
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
301
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
302
+ offset += unpartitioned_numel
303
+
304
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
305
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
306
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
307
+ # live optimizer object, so we are checking that the numbers are within the right range
308
+ align_to = 2 * world_size
309
+
310
+ def zero2_align(x):
311
+ return align_to * math.ceil(x / align_to)
312
+
313
+ if debug:
314
+ print(f"original offset={offset}, avail_numel={avail_numel}")
315
+
316
+ offset = zero2_align(offset)
317
+ avail_numel = zero2_align(avail_numel)
318
+
319
+ if debug:
320
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
321
+
322
+ # Sanity check
323
+ if offset != avail_numel:
324
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
325
+
326
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
327
+
328
+
329
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
330
+ state_dict = OrderedDict()
331
+
332
+ # buffers
333
+ buffers = zero_model_states[0].buffers
334
+ state_dict.update(buffers)
335
+ if debug:
336
+ print(f"added {len(buffers)} buffers")
337
+
338
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
339
+
340
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
341
+
342
+ # recover shared parameters
343
+ for pair in zero_model_states[0].shared_params:
344
+ if pair[1] in state_dict:
345
+ state_dict[pair[0]] = state_dict[pair[1]]
346
+
347
+ return state_dict
348
+
349
+
350
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
351
+ remainder = unpartitioned_numel % world_size
352
+ padding_numel = (world_size - remainder) if remainder else 0
353
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
354
+ return partitioned_numel, padding_numel
355
+
356
+
357
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
358
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
359
+ return
360
+
361
+ if debug:
362
+ for i in range(world_size):
363
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
364
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
365
+
366
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
367
+ wanted_params = len(frozen_param_shapes)
368
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
369
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
370
+ print(f'Frozen params: Have {avail_numel} numels to process.')
371
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
372
+
373
+ total_params = 0
374
+ total_numel = 0
375
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
376
+ total_params += 1
377
+ unpartitioned_numel = shape.numel()
378
+ total_numel += unpartitioned_numel
379
+
380
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
381
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
382
+
383
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
384
+
385
+ if debug:
386
+ print(
387
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
388
+ )
389
+
390
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
391
+
392
+
393
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
394
+ param_shapes = zero_model_states[0].param_shapes
395
+ avail_numel = fp32_flat_groups[0].numel() * world_size
396
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
397
+ # param, re-consolidating each param, while dealing with padding if any
398
+
399
+ # merge list of dicts, preserving order
400
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
401
+
402
+ if debug:
403
+ for i in range(world_size):
404
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
405
+
406
+ wanted_params = len(param_shapes)
407
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
408
+ # not asserting if there is a mismatch due to possible padding
409
+ avail_numel = fp32_flat_groups[0].numel() * world_size
410
+ print(f"Trainable params: Have {avail_numel} numels to process.")
411
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
412
+
413
+ # params
414
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
415
+ # out-of-core computing solution
416
+ offset = 0
417
+ total_numel = 0
418
+ total_params = 0
419
+ for name, shape in param_shapes.items():
420
+
421
+ unpartitioned_numel = shape.numel()
422
+ total_numel += unpartitioned_numel
423
+ total_params += 1
424
+
425
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
426
+
427
+ if debug:
428
+ print(
429
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
430
+ )
431
+
432
+ # XXX: memory usage doubles here
433
+ state_dict[name] = torch.cat(
434
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
435
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
436
+ offset += partitioned_numel
437
+
438
+ offset *= world_size
439
+
440
+ # Sanity check
441
+ if offset != avail_numel:
442
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
443
+
444
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
445
+
446
+
447
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
448
+ state_dict = OrderedDict()
449
+
450
+ # buffers
451
+ buffers = zero_model_states[0].buffers
452
+ state_dict.update(buffers)
453
+ if debug:
454
+ print(f"added {len(buffers)} buffers")
455
+
456
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
457
+
458
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
459
+
460
+ # recover shared parameters
461
+ for pair in zero_model_states[0].shared_params:
462
+ if pair[1] in state_dict:
463
+ state_dict[pair[0]] = state_dict[pair[1]]
464
+
465
+ return state_dict
466
+
467
+
468
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
469
+ """
470
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
471
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
472
+ via a model hub.
473
+
474
+ Args:
475
+ - ``checkpoint_dir``: path to the desired checkpoint folder
476
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
477
+
478
+ Returns:
479
+ - pytorch ``state_dict``
480
+
481
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
482
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
483
+ the checkpoint.
484
+
485
+ A typical usage might be ::
486
+
487
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
488
+ # do the training and checkpoint saving
489
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
490
+ model = model.cpu() # move to cpu
491
+ model.load_state_dict(state_dict)
492
+ # submit to model hub or save the model to share with others
493
+
494
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
495
+ application. i.e. you will need to re-initialize the deepspeed engine, since
496
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
497
+
498
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
499
+
500
+ """
501
+ if tag is None:
502
+ latest_path = os.path.join(checkpoint_dir, 'latest')
503
+ if os.path.isfile(latest_path):
504
+ with open(latest_path, 'r') as fd:
505
+ tag = fd.read().strip()
506
+ else:
507
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
508
+
509
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
510
+
511
+ if not os.path.isdir(ds_checkpoint_dir):
512
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
513
+
514
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
515
+
516
+
517
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
518
+ """
519
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
520
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
521
+
522
+ Args:
523
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
524
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
525
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
526
+ """
527
+
528
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
529
+ print(f"Saving fp32 state dict to {output_file}")
530
+ torch.save(state_dict, output_file)
531
+
532
+
533
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
534
+ """
535
+ 1. Put the provided model to cpu
536
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
537
+ 3. Load it into the provided model
538
+
539
+ Args:
540
+ - ``model``: the model object to update
541
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
542
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
543
+
544
+ Returns:
545
+ - ``model`: modified model
546
+
547
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
548
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
549
+ conveniently placed for you in the checkpoint folder.
550
+
551
+ A typical usage might be ::
552
+
553
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
554
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
555
+ # submit to model hub or save the model to share with others
556
+
557
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
558
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
559
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
560
+
561
+ """
562
+ logger.info(f"Extracting fp32 weights")
563
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
564
+
565
+ logger.info(f"Overwriting model with fp32 weights")
566
+ model = model.cpu()
567
+ model.load_state_dict(state_dict, strict=False)
568
+
569
+ return model
570
+
571
+
572
+ if __name__ == "__main__":
573
+
574
+ parser = argparse.ArgumentParser()
575
+ parser.add_argument("checkpoint_dir",
576
+ type=str,
577
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
578
+ parser.add_argument(
579
+ "output_file",
580
+ type=str,
581
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
582
+ parser.add_argument("-t",
583
+ "--tag",
584
+ type=str,
585
+ default=None,
586
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
587
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
588
+ args = parser.parse_args()
589
+
590
+ debug = args.debug
591
+
592
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)