update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
model-index:
|
5 |
+
- name: DNADebertaSentencepiece10k_continuation_continuation_continuation
|
6 |
+
results: []
|
7 |
+
---
|
8 |
+
|
9 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
10 |
+
should probably proofread and complete it, then remove this comment. -->
|
11 |
+
|
12 |
+
# DNADebertaSentencepiece10k_continuation_continuation_continuation
|
13 |
+
|
14 |
+
This model is a fine-tuned version of [Vlasta/DNADebertaSentencepiece10k_continuation_continuation](https://huggingface.co/Vlasta/DNADebertaSentencepiece10k_continuation_continuation) on the None dataset.
|
15 |
+
It achieves the following results on the evaluation set:
|
16 |
+
- Loss: 5.2605
|
17 |
+
|
18 |
+
## Model description
|
19 |
+
|
20 |
+
More information needed
|
21 |
+
|
22 |
+
## Intended uses & limitations
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Training and evaluation data
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training procedure
|
31 |
+
|
32 |
+
### Training hyperparameters
|
33 |
+
|
34 |
+
The following hyperparameters were used during training:
|
35 |
+
- learning_rate: 5e-05
|
36 |
+
- train_batch_size: 16
|
37 |
+
- eval_batch_size: 16
|
38 |
+
- seed: 42
|
39 |
+
- gradient_accumulation_steps: 4
|
40 |
+
- total_train_batch_size: 64
|
41 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
42 |
+
- lr_scheduler_type: linear
|
43 |
+
- num_epochs: 15
|
44 |
+
- mixed_precision_training: Native AMP
|
45 |
+
|
46 |
+
### Training results
|
47 |
+
|
48 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
49 |
+
|:-------------:|:-----:|:------:|:---------------:|
|
50 |
+
| 5.4076 | 0.36 | 5000 | 5.3702 |
|
51 |
+
| 5.4146 | 0.72 | 10000 | 5.3677 |
|
52 |
+
| 5.4119 | 1.08 | 15000 | 5.3661 |
|
53 |
+
| 5.4093 | 1.45 | 20000 | 5.3577 |
|
54 |
+
| 5.4055 | 1.81 | 25000 | 5.3574 |
|
55 |
+
| 5.3987 | 2.17 | 30000 | 5.3539 |
|
56 |
+
| 5.3974 | 2.53 | 35000 | 5.3509 |
|
57 |
+
| 5.3931 | 2.89 | 40000 | 5.3431 |
|
58 |
+
| 5.387 | 3.25 | 45000 | 5.3447 |
|
59 |
+
| 5.3868 | 3.61 | 50000 | 5.3404 |
|
60 |
+
| 5.3874 | 3.97 | 55000 | 5.3362 |
|
61 |
+
| 5.3797 | 4.34 | 60000 | 5.3275 |
|
62 |
+
| 5.3775 | 4.7 | 65000 | 5.3316 |
|
63 |
+
| 5.3737 | 5.06 | 70000 | 5.3245 |
|
64 |
+
| 5.367 | 5.42 | 75000 | 5.3228 |
|
65 |
+
| 5.3679 | 5.78 | 80000 | 5.3193 |
|
66 |
+
| 5.3648 | 6.14 | 85000 | 5.3185 |
|
67 |
+
| 5.3586 | 6.5 | 90000 | 5.3149 |
|
68 |
+
| 5.361 | 6.86 | 95000 | 5.3086 |
|
69 |
+
| 5.3572 | 7.23 | 100000 | 5.3080 |
|
70 |
+
| 5.3521 | 7.59 | 105000 | 5.3057 |
|
71 |
+
| 5.3516 | 7.95 | 110000 | 5.3020 |
|
72 |
+
| 5.3481 | 8.31 | 115000 | 5.2997 |
|
73 |
+
| 5.3453 | 8.67 | 120000 | 5.2990 |
|
74 |
+
| 5.3446 | 9.03 | 125000 | 5.2951 |
|
75 |
+
| 5.3418 | 9.39 | 130000 | 5.2888 |
|
76 |
+
| 5.3341 | 9.75 | 135000 | 5.2860 |
|
77 |
+
| 5.3371 | 10.12 | 140000 | 5.2879 |
|
78 |
+
| 5.3319 | 10.48 | 145000 | 5.2845 |
|
79 |
+
| 5.3316 | 10.84 | 150000 | 5.2822 |
|
80 |
+
| 5.3306 | 11.2 | 155000 | 5.2803 |
|
81 |
+
| 5.3272 | 11.56 | 160000 | 5.2743 |
|
82 |
+
| 5.3224 | 11.92 | 165000 | 5.2724 |
|
83 |
+
| 5.3224 | 12.28 | 170000 | 5.2726 |
|
84 |
+
| 5.3217 | 12.64 | 175000 | 5.2712 |
|
85 |
+
| 5.3167 | 13.01 | 180000 | 5.2663 |
|
86 |
+
| 5.3148 | 13.37 | 185000 | 5.2659 |
|
87 |
+
| 5.3154 | 13.73 | 190000 | 5.2624 |
|
88 |
+
| 5.3119 | 14.09 | 195000 | 5.2627 |
|
89 |
+
| 5.3122 | 14.45 | 200000 | 5.2599 |
|
90 |
+
| 5.3091 | 14.81 | 205000 | 5.2586 |
|
91 |
+
|
92 |
+
|
93 |
+
### Framework versions
|
94 |
+
|
95 |
+
- Transformers 4.19.2
|
96 |
+
- Pytorch 1.11.0
|
97 |
+
- Datasets 2.2.2
|
98 |
+
- Tokenizers 0.12.1
|