Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
import numpy as np
|
3 |
+
from tensorflow.keras.preprocessing.text import Tokenizer
|
4 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
5 |
+
from tensorflow.keras.models import Sequential
|
6 |
+
|
7 |
+
import json
|
8 |
+
|
9 |
+
|
10 |
+
test_div = 0.75
|
11 |
+
|
12 |
+
vocab_size = 10000
|
13 |
+
embedding_dim = 16
|
14 |
+
max_length = 100
|
15 |
+
trunc_type = 'post'
|
16 |
+
padding_type = 'post'
|
17 |
+
oov_tok = "<OOV>"
|
18 |
+
|
19 |
+
sentences = [
|
20 |
+
'Wow this AI is astonishing',
|
21 |
+
'This is the worst AI',
|
22 |
+
'This is the best AI',
|
23 |
+
'I am the best AI',
|
24 |
+
'It is very astonishing that we can train a model on any data we have',
|
25 |
+
]
|
26 |
+
|
27 |
+
|
28 |
+
headlines = []
|
29 |
+
is_sarcastic = []
|
30 |
+
article_link = []
|
31 |
+
|
32 |
+
with open('Sarcasm_Headlines_Dataset.json', 'r') as f:
|
33 |
+
data = json.load(f)
|
34 |
+
|
35 |
+
|
36 |
+
for i in data:
|
37 |
+
headlines.append(i['headline'])
|
38 |
+
is_sarcastic.append(i['is_sarcastic'])
|
39 |
+
article_link.append(i['article_link'])
|
40 |
+
|
41 |
+
|
42 |
+
train_data = headlines[:int(len(headlines) * test_div)]
|
43 |
+
train_result = is_sarcastic[:int(len(is_sarcastic) * test_div)]
|
44 |
+
test_data = headlines[int(len(headlines) * test_div):]
|
45 |
+
test_result = is_sarcastic[int(len(is_sarcastic) * test_div):]
|
46 |
+
|
47 |
+
|
48 |
+
tokenizer = Tokenizer(num_words=10000, oov_token=oov_tok)
|
49 |
+
tokenizer.fit_on_texts(train_data)
|
50 |
+
|
51 |
+
word_index = tokenizer.word_index
|
52 |
+
|
53 |
+
train_sequences = tokenizer.texts_to_sequences(train_data)
|
54 |
+
test_sequences = tokenizer.texts_to_sequences(test_data)
|
55 |
+
train_padded = pad_sequences(
|
56 |
+
train_sequences, maxlen=max_length, padding=padding_type, truncating=trunc_type)
|
57 |
+
test_padded = pad_sequences(
|
58 |
+
test_sequences, maxlen=max_length, padding=padding_type, truncating=trunc_type)
|
59 |
+
|
60 |
+
training_padded = np.array(train_padded)
|
61 |
+
training_labels = np.array(train_result)
|
62 |
+
testing_padded = np.array(test_padded)
|
63 |
+
testing_labels = np.array(test_result)
|
64 |
+
|
65 |
+
|
66 |
+
model = Sequential([
|
67 |
+
tf.keras.layers.Embedding(
|
68 |
+
vocab_size, embedding_dim, input_length=max_length),
|
69 |
+
tf.keras.layers.GlobalAveragePooling1D(),
|
70 |
+
tf.keras.layers.Dense(24, activation='relu'),
|
71 |
+
tf.keras.layers.Dense(1, activation='sigmoid')
|
72 |
+
])
|
73 |
+
model.compile(loss='binary_crossentropy',
|
74 |
+
optimizer='adam', metrics=['accuracy'])
|
75 |
+
|
76 |
+
model.summary()
|
77 |
+
num_epochs = 30
|
78 |
+
history = model.fit(training_padded, training_labels, epochs=num_epochs,
|
79 |
+
validation_data=(testing_padded, testing_labels), verbose=2)
|
80 |
+
|
81 |
+
sentence = ["granny starting to fear spiders in the garden might be real",
|
82 |
+
"game of thrones season finale showing this sunday night",
|
83 |
+
"Central Valley Coalition Suing the EPA Over Clean Air Failures"]
|
84 |
+
sequences = tokenizer.texts_to_sequences(sentence)
|
85 |
+
padded = pad_sequences(sequences, maxlen=max_length,
|
86 |
+
padding=padding_type, truncating=trunc_type)
|
87 |
+
print(model.predict(padded))
|