Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
datasets:
|
4 |
+
- google/speech_commands
|
5 |
+
base_model:
|
6 |
+
- facebook/wav2vec2-base
|
7 |
+
---
|
8 |
+
# Command Classifier
|
9 |
+
|
10 |
+
This is a lightweight classifier model trained on top of Wav2Vec2 features for classifying speech commands.
|
11 |
+
|
12 |
+
- **Base model**: `facebook/wav2vec2-base`
|
13 |
+
- **Fine-tuned model**: Lightweight linear classifier
|
14 |
+
- **Dataset**: [Google Speech Commands v0.02](https://arxiv.org/abs/1804.03209)
|
15 |
+
|
16 |
+
## Usage
|
17 |
+
|
18 |
+
You can use this classifier by combining it with Wav2Vec2 features. The classifier expects mean-pooled Wav2Vec2 hidden states.
|
19 |
+
|
20 |
+
```python
|
21 |
+
from transformers import Wav2Vec2Model
|
22 |
+
from command_classifier import CommandClassifier
|
23 |
+
import torch
|
24 |
+
|
25 |
+
wav2vec = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base")
|
26 |
+
classifier = CommandClassifier(num_classes=35)
|
27 |
+
classifier.load_state_dict(torch.load("pytorch_model.bin"))
|