File size: 7,872 Bytes
b799660 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
# coding=utf-8
# Lint as: python3
"""bigbench datasets"""
from __future__ import absolute_import, division, print_function
import json
import os
import textwrap
import six
import datasets
CITATION = r"""
@article{srivastava2022beyond,
title={Beyond the imitation game: Quantifying and extrapolating the capabilities of language models},
author={Srivastava, Aarohi and Rastogi, Abhinav and Rao, Abhishek and Shoeb, Abu Awal Md and Abid, Abubakar and Fisch, Adam and Brown, Adam R and Santoro, Adam and Gupta, Aditya and Garriga-Alonso, Adri{\`a} and others},
journal={arXiv preprint arXiv:2206.04615},
year={2022}
}
"""
DESCRIPTION = """\
bigbench json tasks
"""
DATA_URL = "https://www.dropbox.com/s/cjdywlalikdb1c6/bigbench.zip?dl=1"
CONFIGS=['abstract_narrative_understanding',
'anachronisms',
'analogical_similarity',
'analytic_entailment',
'arithmetic',
'ascii_word_recognition',
'authorship_verification',
'auto_categorization',
'auto_debugging',
'bbq_lite_json',
'bridging_anaphora_resolution_barqa',
'causal_judgment',
'cause_and_effect',
'checkmate_in_one',
'chess_state_tracking',
'chinese_remainder_theorem',
'cifar10_classification',
'code_line_description',
'codenames',
'color',
'common_morpheme',
'conceptual_combinations',
'conlang_translation',
'contextual_parametric_knowledge_conflicts',
'crash_blossom',
'crass_ai',
'cryobiology_spanish',
'cryptonite',
'cs_algorithms',
'dark_humor_detection',
'date_understanding',
'disambiguation_qa',
'discourse_marker_prediction',
'disfl_qa',
'dyck_languages',
'elementary_math_qa',
'emoji_movie',
'emojis_emotion_prediction',
'empirical_judgments',
'english_proverbs',
'english_russian_proverbs',
'entailed_polarity',
'entailed_polarity_hindi',
'epistemic_reasoning',
'evaluating_information_essentiality',
'fact_checker',
'fantasy_reasoning',
'few_shot_nlg',
'figure_of_speech_detection',
'formal_fallacies_syllogisms_negation',
'gem',
'gender_inclusive_sentences_german',
'general_knowledge',
'geometric_shapes',
'goal_step_wikihow',
'gre_reading_comprehension',
'hhh_alignment',
'hindi_question_answering',
'hindu_knowledge',
'hinglish_toxicity',
'human_organs_senses',
'hyperbaton',
'identify_math_theorems',
'identify_odd_metaphor',
'implicatures',
'implicit_relations',
'indic_cause_and_effect',
'intent_recognition',
'international_phonetic_alphabet_nli',
'international_phonetic_alphabet_transliterate',
'intersect_geometry',
'irony_identification',
'kanji_ascii',
'kannada',
'key_value_maps',
'known_unknowns',
'language_games',
'language_identification',
'linguistic_mappings',
'linguistics_puzzles',
'list_functions',
'logic_grid_puzzle',
'logical_args',
'logical_deduction',
'logical_fallacy_detection',
'logical_sequence',
'mathematical_induction',
'matrixshapes',
'medical_questions_russian',
'metaphor_boolean',
'metaphor_understanding',
'minute_mysteries_qa',
'misconceptions',
'misconceptions_russian',
'mnist_ascii',
'modified_arithmetic',
'moral_permissibility',
'movie_dialog_same_or_different',
'movie_recommendation',
'mult_data_wrangling',
'navigate',
'nonsense_words_grammar',
'novel_concepts',
'object_counting',
'odd_one_out',
'operators',
'paragraph_segmentation',
'parsinlu_qa',
'parsinlu_reading_comprehension',
'penguins_in_a_table',
'periodic_elements',
'persian_idioms',
'phrase_relatedness',
'physical_intuition',
'physics',
'physics_questions',
'play_dialog_same_or_different',
'polish_sequence_labeling',
'presuppositions_as_nli',
'qa_wikidata',
'question_selection',
'real_or_fake_text',
'reasoning_about_colored_objects',
'repeat_copy_logic',
'rephrase',
'rhyming',
'riddle_sense',
'ruin_names',
'salient_translation_error_detection',
'scientific_press_release',
'semantic_parsing_in_context_sparc',
'semantic_parsing_spider',
'sentence_ambiguity',
'similarities_abstraction',
'simp_turing_concept',
'simple_arithmetic_json',
'simple_arithmetic_json_multiple_choice',
'simple_arithmetic_json_subtasks',
'simple_arithmetic_multiple_targets_json',
'simple_ethical_questions',
'simple_text_editing',
'snarks',
'social_iqa',
'social_support',
'sports_understanding',
'strange_stories',
'strategyqa',
'sufficient_information',
'suicide_risk',
'swahili_english_proverbs',
'swedish_to_german_proverbs',
'symbol_interpretation',
'tellmewhy',
'temporal_sequences',
'tense',
'timedial',
'topical_chat',
'tracking_shuffled_objects',
'understanding_fables',
'undo_permutation',
'unit_conversion',
'unit_interpretation',
'unnatural_in_context_learning',
'vitaminc_fact_verification',
'what_is_the_tao',
'which_wiki_edit',
'winowhy',
'word_sorting',
'word_unscrambling']
class bigbench_Config(datasets.BuilderConfig):
"""BuilderConfig for bigbench."""
def __init__(
self,
text_features,
label_classes=None,
process_label=lambda x: x,
**kwargs,
):
"""BuilderConfig for bigbench.
Args:
text_features: `dict[string, string]`, map from the name of the feature
dict for each text field to the name of the column in the tsv file
data_url: `string`, url to download the zip file from
data_dir: `string`, the path to the folder containing the tsv files in the
downloaded zip
citation: `string`, citation for the data set
url: `string`, url for information about the data set
"""
super(bigbench_Config, self).__init__(
version=datasets.Version("1.0.0", ""), **kwargs
)
self.text_features = text_features
self.data_url = DATA_URL
self.data_dir = self.name #os.path.join("bigbench", self.name)
self.citation = textwrap.dedent(CITATION)
self.description = ""
self.url = "https://github.com/google/BIG-bench"
class bigbench(datasets.GeneratorBasedBuilder):
"""The General Language Understanding Evaluation (bigbench) benchmark."""
BUILDER_CONFIG_CLASS = bigbench_Config
BUILDER_CONFIGS = [
bigbench_Config(
name=name,
text_features={"inputs": "inputs"},
) for name in CONFIGS
]
def _info(self):
features = {
"inputs": datasets.Value("string"),
"targets": datasets.features.Sequence(datasets.Value("string")),
"multiple_choice_targets": datasets.features.Sequence(datasets.Value("string")),
"multiple_choice_scores": datasets.features.Sequence(datasets.Value("int32")),
}
features["idx"] = datasets.Value("int32")
return datasets.DatasetInfo(
description=DESCRIPTION,
features=datasets.Features(features),
homepage=self.config.url,
citation=self.config.citation + "\n" + CITATION,
)
def _split_generators(self, dl_manager):
dl_dir = dl_manager.download_and_extract(self.config.data_url)
data_dir = os.path.join(dl_dir, self.config.data_dir)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_file": os.path.join(data_dir or "", "train.jsonl"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"data_file": os.path.join(data_dir or "", "validation.jsonl"),
"split": "validation",
},
),
]
def _generate_examples(self, data_file,split):
"""Yields examples."""
with open(data_file, "r", encoding="utf-8") as f:
for id_, line in enumerate(f):
line_dict = json.loads(line)
yield id_, line_dict
|