File size: 7,872 Bytes
b799660
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
# coding=utf-8

# Lint as: python3
"""bigbench datasets"""

from __future__ import absolute_import, division, print_function

import json
import os
import textwrap
import six
import datasets


CITATION = r"""
@article{srivastava2022beyond,
  title={Beyond the imitation game: Quantifying and extrapolating the capabilities of language models},
  author={Srivastava, Aarohi and Rastogi, Abhinav and Rao, Abhishek and Shoeb, Abu Awal Md and Abid, Abubakar and Fisch, Adam and Brown, Adam R and Santoro, Adam and Gupta, Aditya and Garriga-Alonso, Adri{\`a} and others},
  journal={arXiv preprint arXiv:2206.04615},
  year={2022}
}
"""

DESCRIPTION = """\
bigbench json tasks
"""

DATA_URL = "https://www.dropbox.com/s/cjdywlalikdb1c6/bigbench.zip?dl=1"

CONFIGS=['abstract_narrative_understanding',
 'anachronisms',
 'analogical_similarity',
 'analytic_entailment',
 'arithmetic',
 'ascii_word_recognition',
 'authorship_verification',
 'auto_categorization',
 'auto_debugging',
 'bbq_lite_json',
 'bridging_anaphora_resolution_barqa',
 'causal_judgment',
 'cause_and_effect',
 'checkmate_in_one',
 'chess_state_tracking',
 'chinese_remainder_theorem',
 'cifar10_classification',
 'code_line_description',
 'codenames',
 'color',
 'common_morpheme',
 'conceptual_combinations',
 'conlang_translation',
 'contextual_parametric_knowledge_conflicts',
 'crash_blossom',
 'crass_ai',
 'cryobiology_spanish',
 'cryptonite',
 'cs_algorithms',
 'dark_humor_detection',
 'date_understanding',
 'disambiguation_qa',
 'discourse_marker_prediction',
 'disfl_qa',
 'dyck_languages',
 'elementary_math_qa',
 'emoji_movie',
 'emojis_emotion_prediction',
 'empirical_judgments',
 'english_proverbs',
 'english_russian_proverbs',
 'entailed_polarity',
 'entailed_polarity_hindi',
 'epistemic_reasoning',
 'evaluating_information_essentiality',
 'fact_checker',
 'fantasy_reasoning',
 'few_shot_nlg',
 'figure_of_speech_detection',
 'formal_fallacies_syllogisms_negation',
 'gem',
 'gender_inclusive_sentences_german',
 'general_knowledge',
 'geometric_shapes',
 'goal_step_wikihow',
 'gre_reading_comprehension',
 'hhh_alignment',
 'hindi_question_answering',
 'hindu_knowledge',
 'hinglish_toxicity',
 'human_organs_senses',
 'hyperbaton',
 'identify_math_theorems',
 'identify_odd_metaphor',
 'implicatures',
 'implicit_relations',
 'indic_cause_and_effect',
 'intent_recognition',
 'international_phonetic_alphabet_nli',
 'international_phonetic_alphabet_transliterate',
 'intersect_geometry',
 'irony_identification',
 'kanji_ascii',
 'kannada',
 'key_value_maps',
 'known_unknowns',
 'language_games',
 'language_identification',
 'linguistic_mappings',
 'linguistics_puzzles',
 'list_functions',
 'logic_grid_puzzle',
 'logical_args',
 'logical_deduction',
 'logical_fallacy_detection',
 'logical_sequence',
 'mathematical_induction',
 'matrixshapes',
 'medical_questions_russian',
 'metaphor_boolean',
 'metaphor_understanding',
 'minute_mysteries_qa',
 'misconceptions',
 'misconceptions_russian',
 'mnist_ascii',
 'modified_arithmetic',
 'moral_permissibility',
 'movie_dialog_same_or_different',
 'movie_recommendation',
 'mult_data_wrangling',
 'navigate',
 'nonsense_words_grammar',
 'novel_concepts',
 'object_counting',
 'odd_one_out',
 'operators',
 'paragraph_segmentation',
 'parsinlu_qa',
 'parsinlu_reading_comprehension',
 'penguins_in_a_table',
 'periodic_elements',
 'persian_idioms',
 'phrase_relatedness',
 'physical_intuition',
 'physics',
 'physics_questions',
 'play_dialog_same_or_different',
 'polish_sequence_labeling',
 'presuppositions_as_nli',
 'qa_wikidata',
 'question_selection',
 'real_or_fake_text',
 'reasoning_about_colored_objects',
 'repeat_copy_logic',
 'rephrase',
 'rhyming',
 'riddle_sense',
 'ruin_names',
 'salient_translation_error_detection',
 'scientific_press_release',
 'semantic_parsing_in_context_sparc',
 'semantic_parsing_spider',
 'sentence_ambiguity',
 'similarities_abstraction',
 'simp_turing_concept',
 'simple_arithmetic_json',
 'simple_arithmetic_json_multiple_choice',
 'simple_arithmetic_json_subtasks',
 'simple_arithmetic_multiple_targets_json',
 'simple_ethical_questions',
 'simple_text_editing',
 'snarks',
 'social_iqa',
 'social_support',
 'sports_understanding',
 'strange_stories',
 'strategyqa',
 'sufficient_information',
 'suicide_risk',
 'swahili_english_proverbs',
 'swedish_to_german_proverbs',
 'symbol_interpretation',
 'tellmewhy',
 'temporal_sequences',
 'tense',
 'timedial',
 'topical_chat',
 'tracking_shuffled_objects',
 'understanding_fables',
 'undo_permutation',
 'unit_conversion',
 'unit_interpretation',
 'unnatural_in_context_learning',
 'vitaminc_fact_verification',
 'what_is_the_tao',
 'which_wiki_edit',
 'winowhy',
 'word_sorting',
 'word_unscrambling']

class bigbench_Config(datasets.BuilderConfig):
    """BuilderConfig for bigbench."""

    def __init__(
        self,
        text_features,
        label_classes=None,
        process_label=lambda x: x,
        **kwargs,
    ):
        """BuilderConfig for bigbench.
        Args:
          text_features: `dict[string, string]`, map from the name of the feature
            dict for each text field to the name of the column in the tsv file
          data_url: `string`, url to download the zip file from
          data_dir: `string`, the path to the folder containing the tsv files in the
            downloaded zip
          citation: `string`, citation for the data set
          url: `string`, url for information about the data set
        """

        super(bigbench_Config, self).__init__(
            version=datasets.Version("1.0.0", ""), **kwargs
        )

        self.text_features = text_features
        self.data_url = DATA_URL
        self.data_dir = self.name #os.path.join("bigbench", self.name)
        self.citation = textwrap.dedent(CITATION)
        self.description = ""
        self.url = "https://github.com/google/BIG-bench"


class bigbench(datasets.GeneratorBasedBuilder):

    """The General Language Understanding Evaluation (bigbench) benchmark."""

    BUILDER_CONFIG_CLASS = bigbench_Config

    BUILDER_CONFIGS = [
        bigbench_Config(
            name=name,
            text_features={"inputs": "inputs"},
        ) for name in CONFIGS
    ]

    def _info(self):
        features = {
            "inputs": datasets.Value("string"),
            "targets": datasets.features.Sequence(datasets.Value("string")),
            "multiple_choice_targets": datasets.features.Sequence(datasets.Value("string")),
            "multiple_choice_scores": datasets.features.Sequence(datasets.Value("int32")),

        }
        features["idx"] = datasets.Value("int32")
        return datasets.DatasetInfo(
            description=DESCRIPTION,
            features=datasets.Features(features),
            homepage=self.config.url,
            citation=self.config.citation + "\n" + CITATION,
        )

    def _split_generators(self, dl_manager):
        dl_dir = dl_manager.download_and_extract(self.config.data_url)
        data_dir = os.path.join(dl_dir, self.config.data_dir)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "data_file": os.path.join(data_dir or "", "train.jsonl"),
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "data_file": os.path.join(data_dir or "", "validation.jsonl"),
                    "split": "validation",
                },
            ),
        ]

    def _generate_examples(self, data_file,split):
        """Yields examples."""
        with open(data_file, "r", encoding="utf-8") as f:
            for id_, line in enumerate(f):
                line_dict = json.loads(line)
                yield id_, line_dict