File size: 10,073 Bytes
33e3dc0
 
 
 
 
7c69936
33e3dc0
7c69936
33e3dc0
 
 
 
 
7c69936
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33e3dc0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
---
library_name: transformers
tags: []
---

# **Model Card for Gemma2-2B-IT-Finetuned-KO-Bias-Detection**

This model is fine-tuned from the base `google/gemma-2-2b-it` model using the Korean UnSmile Dataset, which focuses on identifying hate speech in Korean. The model detects various categories of hate speech, including but not limited to gender, race, age, and sexual orientation.



## Model Details

### **Model Description**

In this project, I fine-tuned the google/gemma-2-2b-it model using the Korean UnSmile Datasetโ€”a comprehensive dataset for hate speech in Koreanโ€”released by Smilegate AI. The fine-tuned model is capable of identifying the following hate speech categories:
- Women/Family: Stereotypes or derogatory remarks targeting women or family structures, including non-traditional families.
- Men: Comments that demean or mock men.
- LGBTQ+: Hate speech aimed at individuals based on sexual orientation or gender identity.
- Race/Nationality: Offensive language or stereotypes related to race or nationality, such as insults towards specific ethnic groups or nationalities.
- Age: Disparaging comments targeting specific age groups or generations.
- Region: Hate speech directed at people from specific regions.
- Religion: Negative or offensive comments aimed at religious groups or beliefs.
- Other Hate Speech: Includes hate speech targeting other groups, such as individuals with disabilities or specific professions (e.g., police, journalists).

This fine-tuned model offers a practical solution for detecting toxic behavior on online platforms, helping ensure safer and more inclusive online environments by classifying harmful content efficiently and accurately.

### **Access Requirements**
To use the Gemma model, please follow these steps:
[**1. Access Gemma**]
- 1-1. Navigate to the gemma-2-2b-it repository that you wish to use.
- 1-2. Click on "Acknowledge license" in the "Access Gemma on Hugging Face" section.
- 1-3. Click on "Authorize," check the required fields, and then click "Accept."
- 1-4. If you see the message "You have been granted access to this model" [Gated model], this means you now have access to the Gemma model.

[**2. Access Tokens**]
- 2-1. Click on your profile in the upper-right corner and select "Settings."
- 2-2. In the menu, click on "Access Tokens," then click on [+ Create new token].
- 2-3. Under [Token type], choose ['Read'] from the options: 'Fine-grained', 'Read', 'Write'.
- 2-4. Enter a name for the token, then click "Create token."
- 2-5. Save the generated Access Token, and use it for Hugging Face authentication, such as in notebook_login.
```python
from huggingface_hub import notebook_login
notebook_login()
```

### **Training Procedure**
**Environment Setup**
We fine-tuned the google/gemma-2-2b-it model using the Korean UnSmile Dataset. Note that versions of transformers before 4.38.1 contain bugs related to Gemma models. Please update to version 4.38.1 or later.

```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig

model_id = "google/gemma-2-2b-it"

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16
)

model = AutoModelForCausalLM.from_pretrained(
    model_id, 
    quantization_config=bnb_config, 
    device_map={"": 0}
)
tokenizer = AutoTokenizer.from_pretrained(model_id, add_eos_token=True)
```

**Setting Up LoRA Configuration**
```python
from peft import LoraConfig, PeftModel, prepare_model_for_kbit_training, get_peft_model

model.gradient_checkpointing_enable()
model = prepare_model_for_kbit_training(model)

import bitsandbytes as bnb

def find_all_linear_names(model):
    cls = bnb.nn.Linear4bit  # For 4-bit precision
    lora_module_names = set()
    for name, module in model.named_modules():
        if isinstance(module, cls):
            names = name.split('.')
            lora_module_names.add(names[0] if len(names) == 1 else names[-1])
    if 'lm_head' in lora_module_names:  # Needed for 16-bit
        lora_module_names.remove('lm_head')
    return list(lora_module_names)

modules = find_all_linear_names(model)

lora_config = LoraConfig(
    r=64,
    lora_alpha=32,
    target_modules=modules,
    lora_dropout=0.05,
    bias="none",
    task_type="CAUSAL_LM"
)

model = get_peft_model(model, lora_config)

trainable, total = model.get_nb_trainable_parameters()
print(f"Trainable: {trainable} | Total: {total} | Percentage: {trainable/total*100:.4f}%")
```

**Loading Training Data**
```python
from datasets import load_dataset
import pandas as pd

df = load_dataset('smilegate-ai/kor_unsmile')
df_hf = pd.concat([df['train'].to_pandas(), df['valid'].to_pandas()]).reset_index()
```

**Preparing the Training Data**
The training data follows the Gemma conversation format:
```shell
<start_of_turn>user
Comment: [User comment]<end_of_turn>
<start_of_turn>model
Hate Speech:
[Categories]<end_of_turn>
```

We create the prompts as follows:
```python
def create_filtered_prompts_v2(row):
    labels = {
        "Women/Family": row['์—ฌ์„ฑ/๊ฐ€์กฑ'],
        "Men": row['๋‚จ์„ฑ'],
        "LGBTQ+": row['์„ฑ์†Œ์ˆ˜์ž'],
        "Race/Nationality": row['์ธ์ข…/๊ตญ์ '],
        "Age": row['์—ฐ๋ น'],
        "Region": row['์ง€์—ญ'],
        "Religion": row['์ข…๊ต'],
        "Other Hate Speech": row['๊ธฐํƒ€ ํ˜์˜ค']
    }

    non_zero_labels = [key for key, value in labels.items() if value == 1]

    if not non_zero_labels:
        non_zero_labels.append('None')

    return (
        "<start_of_turn>user\nComment: " + row['๋ฌธ์žฅ'] + "<end_of_turn>\n"
        "<start_of_turn>model\n"
        "Hate Speech: " + "\n".join(non_zero_labels) + "\n<end_of_turn>"
    )

df_hf['prompt'] = df_hf.apply(create_filtered_prompts_v2, axis=1)
df_hf = df_hf[["prompt", "๋ฌธ์žฅ"]].dropna()
```

**Converting to Hugging Face Dataset Format**
```python
from datasets import Dataset
data = Dataset.from_pandas(df_hf)
```

**Tokenizing the Data**
```python
data = data.map(lambda samples: tokenizer(samples["prompt"]), batched=True)
data = data.train_test_split(test_size=0.2)
```

**Training the Model**
```python
import transformers
from trl import SFTTrainer

tokenizer.pad_token = tokenizer.eos_token
torch.cuda.empty_cache()

trainer = SFTTrainer(
    model=model,
    train_dataset=data["train"],
    eval_dataset=data["test"],
    dataset_text_field="prompt",
    peft_config=lora_config,
    args=transformers.TrainingArguments(
        per_device_train_batch_size=1,
        gradient_accumulation_steps=2,
        max_steps=2000,
        push_to_hub=True,
        push_to_hub_model_id="gemma2-2b-it-finetuned-ko-bias-detection",
        push_to_hub_token=userdata.get('HUGGINGFACEHUB_API_TOKEN'),
        learning_rate=2e-4,
        logging_steps=500,
        output_dir="outputs",
        optim="paged_adamw_8bit",
        save_strategy="steps",
        evaluation_strategy="steps",
        eval_steps=500,
    ),
    data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),
)

import os

os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'

model.config.use_cache = False  # Silence the warnings. Please re-enable for inference!
trainer.train()
```

**Testing the Model**
```python
new_model = "Hyeonseo/gemma2-2b-it-finetuned-ko-bias-detection"

base_model = AutoModelForCausalLM.from_pretrained(
    model_id,
    low_cpu_mem_usage=True,
    return_dict=True,
    torch_dtype=torch.float16,
    device_map={"": 0},
)

merged_model = PeftModel.from_pretrained(base_model, new_model)
merged_model = merged_model.merge_and_unload()

# Save the merged model
merged_model.save_pretrained("merged_model", safe_serialization=True)
tokenizer.save_pretrained("merged_model")
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"

# Push the merged model to the Hugging Face Hub
merged_model.push_to_hub("Hyeonseo/gemma2-2b-it-finetuned-ko-bias-detection_merged", safe_serialization=True)

# Push the tokenizer to the Hugging Face Hub
tokenizer.push_to_hub("Hyeonseo/gemma2-2b-it-finetuned-ko-bias-detection_merged")
```

### **Performance Comparison**

**Base Model("google/gemma-2-2b-it")**
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it")
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b-it", device_map="auto")

def generate_response(input_text, max_length=500):
    input_ids = tokenizer(input_text, return_tensors="pt").to(model.device)
    outputs = model.generate(**input_ids, max_length=max_length)
    return tokenizer.decode(outputs[0], skip_special_tokens=True)

while True:
    input_text = input("์ž…๋ ฅํ•  ๋ฌธ์žฅ์„ ์ ์–ด์ฃผ์„ธ์š” (์ข…๋ฃŒํ•˜๋ ค๋ฉด 'exit' ์ž…๋ ฅ): ")
    if input_text.lower() == 'exit':
        break
    response = generate_response(input_text)
    
    print("\n=== ์ƒ์„ฑ๋œ ๋‹ต๋ณ€ ===")
    print(response)
    print("\n====================\n")
```
```shell
=== ์ƒ์„ฑ๋œ ๋‹ต๋ณ€ ===
์ด๋†ˆ์˜ ๊ตํšŒ์™€ ๋ชฉ์‚ฌ๋Š” ๋˜๋ผ์ด๊ณ ๋งŒ!!!
์ด๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ตํšŒ์™€ ๋ชฉ์‚ฌ๊ฐ€ ๊ตํ™˜๋˜๋Š” ์ •๋ณด์™€ ๊ตํ›ˆ์„ ๋ฐ›์•„์•ผ ํ•  ๊ฒƒ์ž„.
์ด๋ฅผ ํ†ตํ•ด ๊ตํšŒ์™€ ๋ชฉ์‚ฌ๊ฐ€ ๊ตํ™˜๋˜๋Š” ์ •๋ณด์™€ ๊ตํ›ˆ์„ ๋ฐ›์•„ ๊ตํšŒ์˜ ๋ชฉํ‘œ์™€ ๋ชฉ์‚ฌ์˜ ๋ชฉํ‘œ๋ฅผ ๊ณต์œ ํ•˜๊ณ , ๊ตํšŒ์˜ ๊ตฌ์„ฑ์›์ด ๊ตํšŒ์˜ ์˜๋„์™€ ๋ชฉํ‘œ์— ๋„์›€์ด ๋˜๋Š” ๋ฐ ๋„์›€์ด ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ž„.
====================
```

**Fine-tuned Model(gemma2-2b-it-finetuned-ko-bias-detection_merged)**
![image/png](https://cdn-uploads.huggingface.co/production/uploads/66de9a659679be1ef804045b/645gk4BhOGdWA7JH_s1ZG.png)


### **Limitations and Bias**
While the model is effective at detecting specific categories of hate speech in Korean, it may not generalize well to other forms of toxicity or to content in other languages. Additionally, the model's performance is contingent on the quality and representativeness of the training data. Users should be cautious and consider potential biases inherited from the dataset.