--- library_name: transformers license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - audiofolder metrics: - wer model-index: - name: openai-whispersmall-finetuned-2000 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: audiofolder type: audiofolder config: default split: None args: default metrics: - name: Wer type: wer value: 24.18018018018018 --- # openai-whispersmall-finetuned-2000 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1525 - Wer: 24.1802 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1211 | 1.6 | 1000 | 0.1566 | 25.5135 | | 0.0431 | 3.2 | 2000 | 0.1525 | 24.1802 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1