root@autodl-container-32ce119752-f4e7b2aa
commited on
Commit
·
7660c6f
1
Parent(s):
2ad8b66
word_list fix and process script upload
Browse files- ZHglove.wordlist.npy +2 -2
- test4emb.py +68 -0
ZHglove.wordlist.npy
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a81a627b55d86d800194fed251fa598477aa0e901af31da8bb89a6a552476c21
|
3 |
+
size 249297624
|
test4emb.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import argparse
|
3 |
+
import random
|
4 |
+
|
5 |
+
path = "/root/autodl-tmp/sgns.target.word-word.dynwin5.thr10.neg5.dim300.iter5"
|
6 |
+
|
7 |
+
|
8 |
+
def read_vectors(path, topn=0): # read top n word vectors, i.e. top is 10000
|
9 |
+
lines_num = 0
|
10 |
+
vectors = []
|
11 |
+
iw = []
|
12 |
+
with open(path, encoding='utf-8', errors='ignore') as f:
|
13 |
+
first_line = True
|
14 |
+
for line in f:
|
15 |
+
if first_line:
|
16 |
+
first_line = False
|
17 |
+
dim = int(line.rstrip().split()[1])
|
18 |
+
continue
|
19 |
+
lines_num += 1
|
20 |
+
tokens = line.rstrip().split(' ')
|
21 |
+
vectors.append([float(x) for x in tokens[1:]])
|
22 |
+
iw.append(tokens[0])
|
23 |
+
if topn != 0 and lines_num >= topn:
|
24 |
+
break
|
25 |
+
return np.array(vectors), np.array(iw)
|
26 |
+
|
27 |
+
|
28 |
+
def main():
|
29 |
+
vectors_path = "/root/autodl-tmp/sgns.target.word-word.dynwin5.thr10.neg5.dim300.iter5"
|
30 |
+
# embedding_matrix, word_list = read_vectors(vectors_path)
|
31 |
+
|
32 |
+
# np.save("ZHglove.wordlist.npy", word_list)
|
33 |
+
# np.save("ZHglove.300d.mat.npy", embedding_matrix)
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
embedding_matrix = np.load("ZHglove.300d.mat.npy")
|
38 |
+
word_list = np.load("ZHglove.wordlist.npy")
|
39 |
+
|
40 |
+
print(embedding_matrix.shape)
|
41 |
+
print(word_list.shape)
|
42 |
+
|
43 |
+
word2id = {}
|
44 |
+
if embedding_matrix is not None:
|
45 |
+
words = []
|
46 |
+
words_id = []
|
47 |
+
for i, word in enumerate(word_list):
|
48 |
+
if word in word2id:
|
49 |
+
words.append(word)
|
50 |
+
words_id.append(i)
|
51 |
+
# assert word not in word2id, "Duplicate words in pre-trained embeddings"
|
52 |
+
word2id[word] = len(word2id)
|
53 |
+
|
54 |
+
|
55 |
+
embedding_matrix = np.delete(embedding_matrix, words_id, 0)
|
56 |
+
print(embedding_matrix.shape)
|
57 |
+
word_list = np.delete(word_list, words_id, 0)
|
58 |
+
|
59 |
+
|
60 |
+
np.save("ZHglove.wordlist.npy", word_list)
|
61 |
+
np.save("ZHglove.300d.mat.npy", embedding_matrix)
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
print(word_list.shape)
|
66 |
+
|
67 |
+
if __name__ == "__main__":
|
68 |
+
main()
|