Model save
Browse files- README.md +6 -6
- adapter_config.json +8 -5
- adapter_model.safetensors +1 -1
- config.json +1 -1
- tokenizer_config.json +1 -0
- trainer_state.json +22 -22
- training_args.bin +2 -2
README.md
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
---
|
2 |
-
base_model: meta-llama/Llama-3.2-3B-Instruct
|
3 |
library_name: peft
|
4 |
license: llama3.2
|
|
|
5 |
tags:
|
6 |
- generated_from_trainer
|
7 |
model-index:
|
@@ -39,7 +39,7 @@ The following hyperparameters were used during training:
|
|
39 |
- seed: 42
|
40 |
- gradient_accumulation_steps: 16
|
41 |
- total_train_batch_size: 256
|
42 |
-
- optimizer:
|
43 |
- lr_scheduler_type: linear
|
44 |
- num_epochs: 4
|
45 |
|
@@ -49,7 +49,7 @@ The following hyperparameters were used during training:
|
|
49 |
|
50 |
### Framework versions
|
51 |
|
52 |
-
- PEFT 0.
|
53 |
-
- Transformers 4.
|
54 |
-
- Pytorch 2.
|
55 |
-
- Tokenizers 0.
|
|
|
1 |
---
|
|
|
2 |
library_name: peft
|
3 |
license: llama3.2
|
4 |
+
base_model: meta-llama/Llama-3.2-3B-Instruct
|
5 |
tags:
|
6 |
- generated_from_trainer
|
7 |
model-index:
|
|
|
39 |
- seed: 42
|
40 |
- gradient_accumulation_steps: 16
|
41 |
- total_train_batch_size: 256
|
42 |
+
- optimizer: Use adamw_hf with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
43 |
- lr_scheduler_type: linear
|
44 |
- num_epochs: 4
|
45 |
|
|
|
49 |
|
50 |
### Framework versions
|
51 |
|
52 |
+
- PEFT 0.14.0
|
53 |
+
- Transformers 4.47.1
|
54 |
+
- Pytorch 2.5.1
|
55 |
+
- Tokenizers 0.21.0
|
adapter_config.json
CHANGED
@@ -3,6 +3,8 @@
|
|
3 |
"auto_mapping": null,
|
4 |
"base_model_name_or_path": "meta-llama/Llama-3.2-3B-Instruct",
|
5 |
"bias": "none",
|
|
|
|
|
6 |
"fan_in_fan_out": false,
|
7 |
"inference_mode": true,
|
8 |
"init_lora_weights": true,
|
@@ -11,6 +13,7 @@
|
|
11 |
"layers_to_transform": null,
|
12 |
"loftq_config": {},
|
13 |
"lora_alpha": 32,
|
|
|
14 |
"lora_dropout": 0.05,
|
15 |
"megatron_config": null,
|
16 |
"megatron_core": "megatron.core",
|
@@ -20,13 +23,13 @@
|
|
20 |
"rank_pattern": {},
|
21 |
"revision": null,
|
22 |
"target_modules": [
|
|
|
|
|
|
|
|
|
23 |
"v_proj",
|
24 |
"gate_proj",
|
25 |
-
"
|
26 |
-
"k_proj",
|
27 |
-
"down_proj",
|
28 |
-
"up_proj",
|
29 |
-
"q_proj"
|
30 |
],
|
31 |
"task_type": "CAUSAL_LM",
|
32 |
"use_dora": false,
|
|
|
3 |
"auto_mapping": null,
|
4 |
"base_model_name_or_path": "meta-llama/Llama-3.2-3B-Instruct",
|
5 |
"bias": "none",
|
6 |
+
"eva_config": null,
|
7 |
+
"exclude_modules": null,
|
8 |
"fan_in_fan_out": false,
|
9 |
"inference_mode": true,
|
10 |
"init_lora_weights": true,
|
|
|
13 |
"layers_to_transform": null,
|
14 |
"loftq_config": {},
|
15 |
"lora_alpha": 32,
|
16 |
+
"lora_bias": false,
|
17 |
"lora_dropout": 0.05,
|
18 |
"megatron_config": null,
|
19 |
"megatron_core": "megatron.core",
|
|
|
23 |
"rank_pattern": {},
|
24 |
"revision": null,
|
25 |
"target_modules": [
|
26 |
+
"up_proj",
|
27 |
+
"down_proj",
|
28 |
+
"o_proj",
|
29 |
+
"q_proj",
|
30 |
"v_proj",
|
31 |
"gate_proj",
|
32 |
+
"k_proj"
|
|
|
|
|
|
|
|
|
33 |
],
|
34 |
"task_type": "CAUSAL_LM",
|
35 |
"use_dora": false,
|
adapter_model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1684597880
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c2877d7f46a3c20e9ef5df6128c06284d2b5da861ee00fee9a9faa8d5590629
|
3 |
size 1684597880
|
config.json
CHANGED
@@ -33,7 +33,7 @@
|
|
33 |
"rope_theta": 500000.0,
|
34 |
"tie_word_embeddings": true,
|
35 |
"torch_dtype": "bfloat16",
|
36 |
-
"transformers_version": "4.
|
37 |
"use_cache": true,
|
38 |
"vocab_size": 129174
|
39 |
}
|
|
|
33 |
"rope_theta": 500000.0,
|
34 |
"tie_word_embeddings": true,
|
35 |
"torch_dtype": "bfloat16",
|
36 |
+
"transformers_version": "4.47.1",
|
37 |
"use_cache": true,
|
38 |
"vocab_size": 129174
|
39 |
}
|
tokenizer_config.json
CHANGED
@@ -9397,6 +9397,7 @@
|
|
9397 |
"chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- if strftime_now is defined %}\n {%- set date_string = strftime_now(\"%d %b %Y\") %}\n {%- else %}\n {%- set date_string = \"26 Jul 2024\" %}\n {%- endif %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {{- \"<|eot_id|>\" }}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
|
9398 |
"clean_up_tokenization_spaces": true,
|
9399 |
"eos_token": "<|eot_id|>",
|
|
|
9400 |
"model_input_names": [
|
9401 |
"input_ids",
|
9402 |
"attention_mask"
|
|
|
9397 |
"chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- if strftime_now is defined %}\n {%- set date_string = strftime_now(\"%d %b %Y\") %}\n {%- else %}\n {%- set date_string = \"26 Jul 2024\" %}\n {%- endif %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {{- \"<|eot_id|>\" }}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
|
9398 |
"clean_up_tokenization_spaces": true,
|
9399 |
"eos_token": "<|eot_id|>",
|
9400 |
+
"extra_special_tokens": {},
|
9401 |
"model_input_names": [
|
9402 |
"input_ids",
|
9403 |
"attention_mask"
|
trainer_state.json
CHANGED
@@ -10,68 +10,68 @@
|
|
10 |
"log_history": [
|
11 |
{
|
12 |
"epoch": 0.4854368932038835,
|
13 |
-
"grad_norm":
|
14 |
"learning_rate": 8.786407766990292e-05,
|
15 |
-
"loss":
|
16 |
"step": 250
|
17 |
},
|
18 |
{
|
19 |
"epoch": 0.970873786407767,
|
20 |
-
"grad_norm":
|
21 |
"learning_rate": 7.572815533980583e-05,
|
22 |
-
"loss":
|
23 |
"step": 500
|
24 |
},
|
25 |
{
|
26 |
"epoch": 1.4563106796116505,
|
27 |
-
"grad_norm":
|
28 |
"learning_rate": 6.359223300970875e-05,
|
29 |
-
"loss":
|
30 |
"step": 750
|
31 |
},
|
32 |
{
|
33 |
"epoch": 1.941747572815534,
|
34 |
-
"grad_norm":
|
35 |
"learning_rate": 5.145631067961165e-05,
|
36 |
-
"loss":
|
37 |
"step": 1000
|
38 |
},
|
39 |
{
|
40 |
"epoch": 2.4271844660194173,
|
41 |
-
"grad_norm":
|
42 |
"learning_rate": 3.9320388349514564e-05,
|
43 |
-
"loss":
|
44 |
"step": 1250
|
45 |
},
|
46 |
{
|
47 |
"epoch": 2.912621359223301,
|
48 |
-
"grad_norm":
|
49 |
"learning_rate": 2.7184466019417475e-05,
|
50 |
-
"loss":
|
51 |
"step": 1500
|
52 |
},
|
53 |
{
|
54 |
"epoch": 3.3980582524271843,
|
55 |
-
"grad_norm":
|
56 |
"learning_rate": 1.5048543689320387e-05,
|
57 |
-
"loss":
|
58 |
"step": 1750
|
59 |
},
|
60 |
{
|
61 |
"epoch": 3.883495145631068,
|
62 |
-
"grad_norm":
|
63 |
"learning_rate": 2.912621359223301e-06,
|
64 |
-
"loss":
|
65 |
"step": 2000
|
66 |
},
|
67 |
{
|
68 |
"epoch": 4.0,
|
69 |
"step": 2060,
|
70 |
-
"total_flos": 1.
|
71 |
-
"train_loss":
|
72 |
-
"train_runtime":
|
73 |
-
"train_samples_per_second":
|
74 |
-
"train_steps_per_second": 0.
|
75 |
}
|
76 |
],
|
77 |
"logging_steps": 250,
|
@@ -91,7 +91,7 @@
|
|
91 |
"attributes": {}
|
92 |
}
|
93 |
},
|
94 |
-
"total_flos": 1.
|
95 |
"train_batch_size": 16,
|
96 |
"trial_name": null,
|
97 |
"trial_params": null
|
|
|
10 |
"log_history": [
|
11 |
{
|
12 |
"epoch": 0.4854368932038835,
|
13 |
+
"grad_norm": 8.953972816467285,
|
14 |
"learning_rate": 8.786407766990292e-05,
|
15 |
+
"loss": 14.3188,
|
16 |
"step": 250
|
17 |
},
|
18 |
{
|
19 |
"epoch": 0.970873786407767,
|
20 |
+
"grad_norm": 7.940435409545898,
|
21 |
"learning_rate": 7.572815533980583e-05,
|
22 |
+
"loss": 7.1614,
|
23 |
"step": 500
|
24 |
},
|
25 |
{
|
26 |
"epoch": 1.4563106796116505,
|
27 |
+
"grad_norm": 6.729684829711914,
|
28 |
"learning_rate": 6.359223300970875e-05,
|
29 |
+
"loss": 6.0563,
|
30 |
"step": 750
|
31 |
},
|
32 |
{
|
33 |
"epoch": 1.941747572815534,
|
34 |
+
"grad_norm": 7.318089962005615,
|
35 |
"learning_rate": 5.145631067961165e-05,
|
36 |
+
"loss": 5.7287,
|
37 |
"step": 1000
|
38 |
},
|
39 |
{
|
40 |
"epoch": 2.4271844660194173,
|
41 |
+
"grad_norm": 7.576137542724609,
|
42 |
"learning_rate": 3.9320388349514564e-05,
|
43 |
+
"loss": 5.4744,
|
44 |
"step": 1250
|
45 |
},
|
46 |
{
|
47 |
"epoch": 2.912621359223301,
|
48 |
+
"grad_norm": 10.086868286132812,
|
49 |
"learning_rate": 2.7184466019417475e-05,
|
50 |
+
"loss": 5.2792,
|
51 |
"step": 1500
|
52 |
},
|
53 |
{
|
54 |
"epoch": 3.3980582524271843,
|
55 |
+
"grad_norm": 10.154130935668945,
|
56 |
"learning_rate": 1.5048543689320387e-05,
|
57 |
+
"loss": 5.0398,
|
58 |
"step": 1750
|
59 |
},
|
60 |
{
|
61 |
"epoch": 3.883495145631068,
|
62 |
+
"grad_norm": 10.149445533752441,
|
63 |
"learning_rate": 2.912621359223301e-06,
|
64 |
+
"loss": 4.9357,
|
65 |
"step": 2000
|
66 |
},
|
67 |
{
|
68 |
"epoch": 4.0,
|
69 |
"step": 2060,
|
70 |
+
"total_flos": 1.4507840127190487e+18,
|
71 |
+
"train_loss": 6.696053040143355,
|
72 |
+
"train_runtime": 26465.6467,
|
73 |
+
"train_samples_per_second": 19.926,
|
74 |
+
"train_steps_per_second": 0.078
|
75 |
}
|
76 |
],
|
77 |
"logging_steps": 250,
|
|
|
91 |
"attributes": {}
|
92 |
}
|
93 |
},
|
94 |
+
"total_flos": 1.4507840127190487e+18,
|
95 |
"train_batch_size": 16,
|
96 |
"trial_name": null,
|
97 |
"trial_params": null
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:66837b8c0cc9a43cbd9437dd776d6ccda468fb33dd18065a3378a3675b6126fe
|
3 |
+
size 5304
|