Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: text-to-video
|
3 |
+
---
|
4 |
+
AnimateDiff is a method that allows you to create videos using pre-existing Stable Diffusion Text to Image models.
|
5 |
+
|
6 |
+
Converted https://huggingface.co/guoyww/animatediff/blob/main/mm_sdxl_v10_beta.ckpt to Huggingface Diffusers format using following script based Diffuser's convetion script (available https://github.com/huggingface/diffusers/blob/main/scripts/convert_animatediff_motion_module_to_diffusers.py)
|
7 |
+
|
8 |
+
```
|
9 |
+
import argparse
|
10 |
+
|
11 |
+
import torch
|
12 |
+
|
13 |
+
from diffusers import MotionAdapter
|
14 |
+
|
15 |
+
|
16 |
+
def convert_motion_module(original_state_dict):
|
17 |
+
converted_state_dict = {}
|
18 |
+
for k, v in original_state_dict.items():
|
19 |
+
if "pos_encoder" in k:
|
20 |
+
continue
|
21 |
+
|
22 |
+
else:
|
23 |
+
converted_state_dict[
|
24 |
+
k.replace(".norms.0", ".norm1")
|
25 |
+
.replace(".norms.1", ".norm2")
|
26 |
+
.replace(".ff_norm", ".norm3")
|
27 |
+
.replace(".attention_blocks.0", ".attn1")
|
28 |
+
.replace(".attention_blocks.1", ".attn2")
|
29 |
+
.replace(".temporal_transformer", "")
|
30 |
+
] = v
|
31 |
+
|
32 |
+
return converted_state_dict
|
33 |
+
|
34 |
+
|
35 |
+
def get_args():
|
36 |
+
parser = argparse.ArgumentParser()
|
37 |
+
parser.add_argument("--ckpt_path", type=str, required=True)
|
38 |
+
parser.add_argument("--output_path", type=str, required=True)
|
39 |
+
parser.add_argument("--use_motion_mid_block", action="store_true")
|
40 |
+
parser.add_argument("--motion_max_seq_length", type=int, default=32)
|
41 |
+
parser.add_argument("--save_fp16", action="store_true")
|
42 |
+
|
43 |
+
return parser.parse_args()
|
44 |
+
|
45 |
+
|
46 |
+
if __name__ == "__main__":
|
47 |
+
args = get_args()
|
48 |
+
|
49 |
+
state_dict = torch.load(args.ckpt_path, map_location="cpu")
|
50 |
+
if "state_dict" in state_dict.keys():
|
51 |
+
state_dict = state_dict["state_dict"]
|
52 |
+
|
53 |
+
conv_state_dict = convert_motion_module(state_dict)
|
54 |
+
adapter = MotionAdapter(
|
55 |
+
use_motion_mid_block=False,
|
56 |
+
motion_max_seq_length=32,
|
57 |
+
block_out_channels=(320, 640, 1280),
|
58 |
+
)
|
59 |
+
# skip loading position embeddings
|
60 |
+
adapter.load_state_dict(conv_state_dict, strict=False)
|
61 |
+
adapter.save_pretrained(args.output_path)
|
62 |
+
|
63 |
+
if args.save_fp16:
|
64 |
+
adapter.to(torch.float16).save_pretrained(args.output_path, variant="fp16")
|
65 |
+
|
66 |
+
```
|
67 |
+
|
68 |
+
The following example demonstrates how you can utilize the motion modules with an existing Stable Diffusion text to image model.
|
69 |
+
|
70 |
+
#TODO
|