POINTS-Qwen-2-5-7B-Chat / modeling_llama.py
YuanLiuuuuuu's picture
Add files using upload-large-folder tool
13e09f8 verified
raw
history blame
36.4 kB
from functools import partial
from typing import Optional, Tuple, Union
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from packaging import version
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from .configuration_llama import CustomLlamaConfig
try:
from apex.megatron_layer_norm import MixedFusedLayerNorm as LayerNorm
except ImportError:
from torch.nn import LayerNorm
USE_FLASH_ATTN = False
try:
import flash_attn
if version.parse(flash_attn.__version__) >= version.parse("2.1.0"):
USE_FLASH_ATTN = True
from flash_attn import flash_attn_func, flash_attn_varlen_func
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input
except ImportError:
pass
logger = logging.get_logger(__name__)
def _get_unpad_data(attention_mask):
seqlens_in_batch = (attention_mask).sum(dim=-1, dtype=torch.int32)
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
max_seqlen_in_batch = seqlens_in_batch.max().item()
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0,
dtype=torch.torch.int32), (1, 0))
return (
indices,
cu_seqlens,
max_seqlen_in_batch,
)
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
"""
Initialize the RMSNorm normalization layer.
Args:
dim (int): The dimension of the input tensor.
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.
Attributes:
eps (float): A small value added to the denominator for numerical stability.
weight (nn.Parameter): Learnable scaling parameter.
"""
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
"""
Apply the RMSNorm normalization to the input tensor.
Args:
x (torch.Tensor): The input tensor.
Returns:
torch.Tensor: The normalized tensor.
"""
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
"""
Forward pass through the RMSNorm layer.
Args:
x (torch.Tensor): The input tensor.
Returns:
torch.Tensor: The output tensor after applying RMSNorm.
"""
output = self._norm(x.float()).type_as(x)
return output * self.weight
def get_norm(config: CustomLlamaConfig):
norm_type = config.norm_type
if norm_type == 'rms_norm':
return partial(RMSNorm, eps=config.layernorm_epsilon)
elif norm_type == 'layer_norm':
return partial(LayerNorm, eps=config.layernorm_epsilon)
else:
raise ValueError(f'Unsupported norm type: {norm_type}')
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
def _make_causal_mask(
input_ids_shape: torch.Size,
dtype: torch.dtype,
device: torch.device,
past_key_values_length: int = 0,
):
"""
Make causal mask used for bi-directional self-attention.
"""
bsz, tgt_len = input_ids_shape
mask = torch.full((tgt_len, tgt_len),
torch.finfo(dtype).min, device=device)
mask_cond = torch.arange(mask.size(-1), device=device)
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
mask = mask.to(dtype)
if past_key_values_length > 0:
mask = torch.cat(
[
torch.zeros(
tgt_len, past_key_values_length, dtype=dtype, device=device
),
mask,
],
dim=-1,
)
return mask[None, None, :, :].expand(
bsz, 1, tgt_len, tgt_len + past_key_values_length
)
# Copied from transformers.models.bart.modeling_bart._expand_mask
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
bsz, src_len = mask.size()
tgt_len = tgt_len if tgt_len is not None else src_len
expanded_mask = mask[:, None, None, :].expand(
bsz, 1, tgt_len, src_len).to(dtype)
inverted_mask = 1.0 - expanded_mask
return inverted_mask.masked_fill(
inverted_mask.to(torch.bool), torch.finfo(dtype).min
)
class RotaryEmbedding(torch.nn.Module):
def __init__(self, dim, base=10000, compress=1.0):
super().__init__()
self.inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
self.seq_len_cached = 0
self.cos_cached = None
self.sin_cached = None
self.compress = compress
def forward(self, x, seq_len):
if seq_len > self.seq_len_cached:
self.seq_len_cached = seq_len
self.inv_freq = self.inv_freq.to(x.device)
t = (
torch.arange(seq_len, device=self.inv_freq.device,
dtype=self.inv_freq.dtype)
* self.compress
)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
self.cos_cached = emb.cos()[None, None, :, :]
self.sin_cached = emb.sin()[None, None, :, :]
return self.cos_cached[:seq_len, ...], self.sin_cached[:seq_len, ...]
# rotary pos emb helpers:
def rotate_half(x):
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2:]
return torch.cat((-x2, x1), dim=-1)
@torch.jit.script
def apply_rotary_pos_emb(q, k, cos, sin, offset: int = 0):
cos, sin = (
cos[..., offset: q.shape[-2] + offset, :],
sin[..., offset: q.shape[-2] + offset, :],
)
q_embed = (q.float() * cos) + (rotate_half(q.float()) * sin)
k_embed = (k.float() * cos) + (rotate_half(k.float()) * sin)
return q_embed.to(q.dtype), k_embed.to(k.dtype)
def apply_rotary_pos_emb_torch(
q, k, cos, sin, offset: int = 0
): # jitting fails with bf16
cos, sin = (
cos[..., offset: q.shape[-2] + offset, :],
sin[..., offset: q.shape[-2] + offset, :],
)
q_embed = (q.float() * cos) + (rotate_half(q.float()) * sin)
k_embed = (k.float() * cos) + (rotate_half(k.float()) * sin)
return q_embed.to(q.dtype), k_embed.to(k.dtype)
class CustomLlamaAttention(nn.Module):
def __init__(self, config: CustomLlamaConfig):
super().__init__()
self.num_attention_heads = config.num_attention_heads
self.num_kv_heads = config.num_kv_heads
self.hidden_size = config.hidden_size
self.head_size = self.hidden_size // self.num_attention_heads
self.rotary_ndims = int(self.head_size * config.rotary_pct)
self.max_positions = config.max_position_embeddings
self.rotary_emb = RotaryEmbedding(
self.rotary_ndims,
base=config.rotary_emb_base,
compress=config.rotary_compress,
)
self.norm_factor = torch.sqrt(
torch.tensor(self.head_size, dtype=torch.float32)
).to(torch.get_default_dtype())
if self.use_gqa:
self.query_dense = nn.Linear(
config.hidden_size,
config.hidden_size,
bias=getattr(config, "qkv_proj_bias", True)
)
self.key_value_dense = nn.Linear(
config.hidden_size,
self.head_size * 2 * config.num_kv_heads,
bias=getattr(config, "qkv_proj_bias", True),
)
else:
self.query_key_value = nn.Linear(
config.hidden_size,
3 * config.hidden_size,
bias=getattr(config, "qkv_proj_bias", True),
)
self.dense = nn.Linear(
config.hidden_size,
config.hidden_size,
bias=getattr(config, "out_proj_bias", True),
)
self.apply_rotary_fn = (
apply_rotary_pos_emb_torch
if config.torch_dtype == torch.bfloat16
else apply_rotary_pos_emb
)
@property
def use_gqa(self):
return self.num_kv_heads < self.num_attention_heads
def forward(
self,
hidden_states,
attention_mask,
head_mask=None,
layer_past=None,
use_cache=False,
output_attentions=False,
):
has_layer_past = layer_past is not None
if self.use_gqa:
# Compute Q
# [batch, seq_len, hidden_size] --> [batch_size, seq_len, (num_heads * head_size)]
q = self.query_dense(hidden_states)
# [batch_size, seq_len, (num_heads * head_size)]
# --> [batch, seq_len, num_attention_heads, head_size]
new_q_shape = q.size()[:-1] + \
(self.num_attention_heads, self.head_size)
q = q.view(*new_q_shape)
# Compute KV
# [batch, seq_len, hidden_size] --> [batch_size, seq_len, (num_attention_groups * 2 * head_size)]
kv = self.key_value_dense(hidden_states)
# [batch, seq_len, (num_attention_groups * 2 * head_size)]
# --> [batch, seq_len, num_attention_groups, 2 * head_size]
new_kv_shape = kv.size()[:-1] + (
self.num_kv_heads,
2 * self.head_size,
)
kv = kv.view(*new_kv_shape)
# [batch, num_attention_heads, seq_len, head_size]
query = q.permute(0, 2, 1, 3)
# [batch, num_attention_groups, seq_len, head_size]
key = kv[..., : self.head_size].permute(0, 2, 1, 3)
value = kv[..., self.head_size:].permute(0, 2, 1, 3)
else:
# Compute QKV
# Attention heads [batch, seq_len, hidden_size]
# --> [batch, seq_len, (np * 3 * head_size)]
qkv = self.query_key_value(hidden_states)
# [batch, seq_len, (num_heads * 3 * head_size)]
# --> [batch, seq_len, num_heads, 3 * head_size]
new_qkv_shape = qkv.size()[:-1] + (
self.num_attention_heads,
3 * self.head_size,
)
qkv = qkv.view(*new_qkv_shape)
# [batch, seq_len, num_attention_heads, 3 * head_size] --> 3 [batch, num_attention_heads, seq_len, head_size]
query = qkv[..., : self.head_size].permute(0, 2, 1, 3)
key = qkv[..., self.head_size: 2 *
self.head_size].permute(0, 2, 1, 3)
value = qkv[..., 2 * self.head_size:].permute(0, 2, 1, 3)
# Compute rotary embeddings on rotary_ndims
query_rot = query[..., : self.rotary_ndims]
query_pass = query[..., self.rotary_ndims:]
key_rot = key[..., : self.rotary_ndims]
key_pass = key[..., self.rotary_ndims:]
# Compute token offset for rotary embeddings (when decoding)
seq_len = key.shape[-2]
offset = 0
if has_layer_past:
offset = layer_past[0].shape[-2]
seq_len += offset
cos, sin = self.rotary_emb(value, seq_len=seq_len)
query, key = self.apply_rotary_fn(
query_rot, key_rot, cos, sin, offset=offset)
query = torch.cat((query, query_pass), dim=-1)
key = torch.cat((key, key_pass), dim=-1)
# Cache QKV values
if has_layer_past:
past_key = layer_past[0]
past_value = layer_past[1]
key = torch.cat((past_key, key), dim=-2)
value = torch.cat((past_value, value), dim=-2)
present = (key, value) if use_cache else None
if USE_FLASH_ATTN:
# Compute attention
attn_output, attn_weights = self._flash_attn(
query, key, value, attention_mask, head_mask
)
# from [batch_size, ]
attn_output = attn_output.reshape(
attn_output.size(0), attn_output.size(1), self.hidden_size).contiguous()
else:
# Compute attention
attn_output, attn_weights = self._attn(
query, key, value, attention_mask, head_mask
)
# Reshape outputs
attn_output = self._merge_heads(
attn_output, self.num_attention_heads, self.head_size
)
attn_output = self.dense(attn_output)
outputs = (attn_output, present)
if output_attentions:
outputs += (attn_weights,)
return outputs
@classmethod
def _split_heads(cls, tensor, num_attention_heads, attn_head_size):
"""
Splits hidden dim into attn_head_size and num_attention_heads
"""
# tensor: [bs, seq_len, hidden_size]
new_shape = tensor.size()[:-1] + (num_attention_heads, attn_head_size)
# -> [bs, seq_len, num_attention_heads, attn_head_size]
tensor = tensor.view(new_shape)
# -> [bs, num_attention_heads, seq_len, attn_head_size]
tensor = tensor.permute(0, 2, 1, 3)
return tensor
@classmethod
def _merge_heads(cls, tensor, num_attention_heads, attn_head_size):
"""
Merges attn_head_size dim and num_attn_heads dim into hidden dim
"""
# tensor [bs, num_attention_heads, seq_len, attn_head_size]
tensor = tensor.permute(0, 2, 1, 3).contiguous()
# -> [bs, seq_len, num_attention_heads, attn_head_size]
tensor = tensor.view(
tensor.size(0), tensor.size(
1), num_attention_heads * attn_head_size
)
# -> [bs, seq_len, hidden_size]
return tensor
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
# q: [bs, num_attention_heads, seq_len, attn_head_size]
# k,v: [bs, num_attention_groups, seq_len, attn_head_size]
# compute causal mask from causal mask buffer
batch_size, num_attention_heads, query_length, attn_head_size = query.size()
_, num_attention_groups, key_length, _ = key.size()
group_size = num_attention_heads // num_attention_groups
if not self.use_gqa:
assert group_size == 1
# repeat key and value, so we can use normal MHA algorithm
key = (
key.view(batch_size, num_attention_groups,
1, key_length, attn_head_size)
.repeat(1, 1, group_size, 1, 1)
.view(batch_size, num_attention_heads, key_length, attn_head_size)
)
value = (
value.view(batch_size, num_attention_groups,
1, key_length, attn_head_size)
.repeat(1, 1, group_size, 1, 1)
.view(batch_size, num_attention_heads, key_length, attn_head_size)
)
query = query.view(
batch_size * num_attention_heads, query_length, attn_head_size
)
key = key.view(batch_size * num_attention_heads,
key_length, attn_head_size)
attn_scores = torch.zeros(
batch_size * num_attention_heads,
query_length,
key_length,
dtype=query.dtype,
device=key.device,
)
attn_scores = torch.baddbmm(
attn_scores,
query,
key.transpose(1, 2),
beta=1.0,
alpha=(
torch.tensor(
1.0, dtype=self.norm_factor.dtype, device=self.norm_factor.device
)
/ self.norm_factor
),
)
attn_scores = attn_scores.view(
batch_size, num_attention_heads, query_length, key_length
)
mask_value = torch.finfo(attn_scores.dtype).min
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
mask_value = torch.tensor(mask_value, dtype=attn_scores.dtype).to(
attn_scores.device
)
if attention_mask is not None:
# Apply the attention mask
attn_scores = attn_scores + attention_mask
attn_weights = nn.functional.softmax(attn_scores, dim=-1)
attn_weights = attn_weights.to(value.dtype)
# Mask heads if we want to
if head_mask is not None:
attn_weights = attn_weights * head_mask
attn_output = torch.matmul(attn_weights, value)
return attn_output, attn_weights
def _flash_attn(self, query, key, value, attention_mask=None, head_mask=None):
assert head_mask is None, "head_mask is not supported in _flash_attn"
# q: [bs, num_attention_heads, seq_len, attn_head_size]
# k,v: [bs, num_attention_groups, seq_len, attn_head_size]
# flash_attn need the layout to be [batch_size, sequence_length, num_heads, head_dim]
query = query.transpose(1, 2)
key = key.transpose(1, 2)
value = value.transpose(1, 2)
query_length = query.size(1)
causal = query_length != 1
if attention_mask is not None:
batch_size = query.size(0)
query, key, value, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
query, key, value, attention_mask, query_length
)
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
attn_output_unpad = flash_attn_varlen_func(
query,
key,
value,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_in_batch_q,
max_seqlen_k=max_seqlen_in_batch_k,
dropout_p=0,
causal=causal,
)
attn_output = pad_input(
attn_output_unpad, indices_q, batch_size, query_length)
else:
attn_output = flash_attn_func(
query, key, value, 0, causal=causal
)
return attn_output, None
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(
attention_mask)
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
num_attention_heads = query_layer.shape[2]
key_layer = index_first_axis(
key_layer.reshape(batch_size * kv_seq_len,
num_key_value_heads, head_dim), indices_k
)
value_layer = index_first_axis(
value_layer.reshape(batch_size * kv_seq_len,
num_key_value_heads, head_dim), indices_k
)
if query_length == kv_seq_len:
query_layer = index_first_axis(
query_layer.reshape(batch_size * kv_seq_len,
num_attention_heads, head_dim), indices_k
)
cu_seqlens_q = cu_seqlens_k
max_seqlen_in_batch_q = max_seqlen_in_batch_k
indices_q = indices_k
elif query_length == 1:
max_seqlen_in_batch_q = 1
cu_seqlens_q = torch.arange(
batch_size + 1, dtype=torch.int32, device=query_layer.device
) # There is a memcpy here, that is very bad.
indices_q = cu_seqlens_q[:-1]
query_layer = query_layer.squeeze(1)
else:
# The -q_len: slice assumes left padding.
attention_mask = attention_mask[:, -query_length:]
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
query_layer, attention_mask)
return (
query_layer,
key_layer,
value_layer,
indices_q,
(cu_seqlens_q, cu_seqlens_k),
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
)
def swiglu(x):
x1, x2 = x.chunk(2, dim=(x.ndim - 1))
return x1 * torch.nn.functional.silu(x2)
def get_activation(act_name: str):
if act_name == "gelu":
return ACT2FN["gelu_new"]
elif act_name == "swiglu":
return swiglu
else:
return ACT2FN[act_name]
class CustomLlamaMLP(nn.Module):
def __init__(self, config):
super().__init__()
h_to_4h_out_channels = (
config.ffn_hidden_size * 2
if config.hidden_act == "swiglu"
else config.ffn_hidden_size
)
self.dense_h_to_4h = nn.Linear(
config.hidden_size,
h_to_4h_out_channels,
bias=getattr(config, "mlp_fc1_bias", True)
)
self.dense_4h_to_h = nn.Linear(
config.ffn_hidden_size,
config.hidden_size,
bias=getattr(config, "mlp_fc2_bias", True)
)
self.act = get_activation(config.hidden_act)
def forward(self, hidden_states):
hidden_states = self.dense_h_to_4h(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.dense_4h_to_h(hidden_states)
return hidden_states
class CustomLlamaLayer(nn.Module):
def __init__(self, config):
super().__init__()
norm_func = get_norm(config)
self.input_layernorm = norm_func(config.hidden_size)
self.post_attention_layernorm = norm_func(config.hidden_size)
self.attention = CustomLlamaAttention(config)
self.mlp = CustomLlamaMLP(config)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
use_cache=False,
layer_past=None,
output_attentions=False,
):
attn_in = self.input_layernorm(hidden_states)
attention_layer_outputs = self.attention(
attn_in,
attention_mask=attention_mask,
layer_past=layer_past,
head_mask=head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
)
attn_output = attention_layer_outputs[
0
] # output_attn: attn_output, present, (attn_weights)
outputs = attention_layer_outputs[1:]
# pseudocode:
# x = x + attn(ln1(x))
# x = x + mlp(ln2(x))
attn_output = attn_output + hidden_states
mlp_input = self.post_attention_layernorm(attn_output)
mlp_output = self.mlp(mlp_input)
hidden_states = mlp_output + attn_output
if use_cache:
outputs = (
hidden_states,
) + outputs # hidden_states, present, (attn_weights)
else:
# hidden_states, (attn_weights)
outputs = (hidden_states,) + outputs[1:]
return outputs
class CustomLlamaPreTrainedModel(PreTrainedModel):
config_class = CustomLlamaConfig
base_model_prefix = "lm"
_no_split_modules = ["CustomLlamaLayer"]
class CustomLlamaModel(CustomLlamaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.embed_in = nn.Embedding(config.vocab_size, config.hidden_size)
self.layers = nn.ModuleList(
[CustomLlamaLayer(config) for _ in range(config.num_layers)]
)
norm_func = get_norm(config)
self.final_layer_norm = norm_func(config.hidden_size)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_in
def set_input_embeddings(self, value):
self.embed_in = value
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
def _prepare_decoder_attention_mask(
self, attention_mask, input_shape, inputs_embeds, past_key_values_length
):
# create causal mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
combined_attention_mask = None
if input_shape[-1] > 1:
combined_attention_mask = _make_causal_mask(
input_shape,
inputs_embeds.dtype,
device=inputs_embeds.device,
past_key_values_length=past_key_values_length,
)
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
expanded_attn_mask = _expand_mask(
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
).to(inputs_embeds.device)
combined_attention_mask = (
expanded_attn_mask
if combined_attention_mask is None
else expanded_attn_mask + combined_attention_mask
)
return combined_attention_mask
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
r"""
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
"""
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if input_ids is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time"
)
elif input_ids is not None:
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError(
"You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
seq_length_with_past = seq_length
past_key_values_length = 0
if past_key_values is not None:
past_key_values_length = past_key_values[0][0].shape[2]
seq_length_with_past = seq_length_with_past + past_key_values_length
else:
past_key_values = tuple([None] * self.config.num_layers)
if inputs_embeds is None:
inputs_embeds = self.embed_in(input_ids)
# Attention mask.
if attention_mask is None:
attention_mask = torch.ones(
(batch_size, seq_length_with_past),
dtype=torch.bool,
device=inputs_embeds.device,
)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_layers x num_heads]
# and head_mask is converted to shape [num_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
if USE_FLASH_ATTN:
attention_mask = attention_mask if (
attention_mask is not None and 0 in attention_mask) else None
else:
attention_mask = self._prepare_decoder_attention_mask(
attention_mask,
(batch_size, seq_length),
inputs_embeds,
past_key_values_length,
)
hidden_states = inputs_embeds
presents = () if use_cache else None
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for i, (layer, layer_past) in enumerate(zip(self.layers, past_key_values)):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
outputs = layer(
hidden_states,
attention_mask=attention_mask,
head_mask=head_mask[i],
layer_past=layer_past,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states = outputs[0]
if use_cache is True:
presents = presents + (outputs[1],)
if output_attentions:
all_attentions = all_attentions + \
(outputs[2 if use_cache else 1],)
hidden_states = self.final_layer_norm(hidden_states)
# Add last hidden state
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [hidden_states, presents, all_hidden_states, all_attentions]
if v is not None
)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_attentions,
)
class CustomLlamaForCausalLM(CustomLlamaPreTrainedModel):
_tied_weights_keys = ["embed_out.weight"]
_keys_to_ignore_on_load_unexpected = [
r"lm.layers.\d+.attention.rotary_emb.inv_freq"
]
def __init__(self, config):
super().__init__(config)
self.lm = CustomLlamaModel(config)
self.embed_out = nn.Linear(
config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.embed_out
def set_output_embeddings(self, new_embeddings):
self.embed_out = new_embeddings
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional tensors are
only required when the model is used as a decoder in a Sequence to Sequence model.
Contains pre-computed hidden-states (key and values in the self-attention blocks that can be used (see
`past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
```"""
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
outputs = self.lm(
input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
lm_logits = self.embed_out(hidden_states)
lm_loss = None
if labels is not None:
# we are doing next-token prediction; shift prediction scores and input ids by one
shift_logits = lm_logits[:, :-1, :].contiguous()
labels = labels[:, 1:].contiguous()
loss_fct = CrossEntropyLoss()
lm_loss = loss_fct(
shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1)
)
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((lm_loss,) + output) if lm_loss is not None else output
return CausalLMOutputWithPast(
loss=lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **model_kwargs
):
input_shape = input_ids.shape
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
if attention_mask is None:
attention_mask = input_ids.new_ones(input_shape)
# cut decoder_input_ids if past is used
if past_key_values and past_key_values[0] is not None:
input_ids = input_ids[:, -1:]
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"attention_mask": attention_mask,
"past_key_values": past_key_values
}
)
return model_inputs
def _reorder_cache(self, past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(
past_state.index_select(0, beam_idx)
for past_state in layer_past[:2]
)
+ layer_past[2:],
)
return reordered_past