File size: 3,740 Bytes
06b5d63
 
 
 
 
a6a71eb
06b5d63
 
 
 
 
 
 
 
 
 
 
 
 
a6a71eb
06b5d63
a6a71eb
 
 
 
 
 
 
 
 
06b5d63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
base_model: mistralai/Mistral-7B-v0.1
library_name: peft
license: apache-2.0
tags:
- alignment-handbook
- trl
- dpo
- generated_from_trainer
model-index:
- name: zephyr-7b-dpo-lora
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# zephyr-7b-dpo-lora

This model is a fine-tuned version of [alignment-handbook/zephyr-7b-sft-qlora](https://huggingface.co/alignment-handbook/zephyr-7b-sft-qlora) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4930
- Rewards/chosen: -1.7956
- Rewards/rejected: -2.7390
- Rewards/accuracies: 0.7242
- Rewards/margins: 0.9434
- Logps/rejected: -536.2667
- Logps/chosen: -447.0530
- Logits/rejected: 0.9396
- Logits/chosen: 0.5316

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6087        | 0.1   | 100  | 0.6158          | -0.3136        | -0.5466          | 0.6726             | 0.2330          | -317.0252      | -298.8513    | -2.0360         | -2.1198       |
| 0.5463        | 0.21  | 200  | 0.5504          | -1.1262        | -1.6978          | 0.6925             | 0.5716          | -432.1413      | -380.1157    | -0.0431         | -0.2986       |
| 0.4949        | 0.31  | 300  | 0.5161          | -1.6535        | -2.4330          | 0.7183             | 0.7794          | -505.6621      | -432.8479    | 0.4034          | 0.1418        |
| 0.5239        | 0.42  | 400  | 0.5101          | -1.3693        | -2.0810          | 0.7302             | 0.7116          | -470.4624      | -404.4282    | 0.8585          | 0.5591        |
| 0.5272        | 0.52  | 500  | 0.5003          | -2.0358        | -2.9629          | 0.7381             | 0.9271          | -558.6534      | -471.0703    | 1.0404          | 0.7150        |
| 0.4886        | 0.63  | 600  | 0.4982          | -1.7739        | -2.6428          | 0.7262             | 0.8689          | -526.6414      | -444.8822    | 0.3752          | 0.0594        |
| 0.516         | 0.73  | 700  | 0.4933          | -2.0243        | -2.9388          | 0.7302             | 0.9144          | -556.2413      | -469.9273    | 0.8898          | 0.5312        |
| 0.495         | 0.84  | 800  | 0.4949          | -1.7382        | -2.6840          | 0.7262             | 0.9458          | -530.7620      | -441.3121    | 0.8308          | 0.4157        |
| 0.4866        | 0.94  | 900  | 0.4932          | -1.7916        | -2.7322          | 0.7262             | 0.9407          | -535.5854      | -446.6503    | 0.9353          | 0.5257        |


### Framework versions

- PEFT 0.7.1
- Transformers 4.38.2
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2