--- base_model: HuggingFaceH4/mistral-7b-sft-beta library_name: peft license: mit tags: - alignment-handbook - trl - dpo - generated_from_trainer model-index: - name: zephyr-7b-dpo-lora results: [] --- # zephyr-7b-dpo-lora This model is a fine-tuned version of [HuggingFaceH4/mistral-7b-sft-beta](https://huggingface.co/HuggingFaceH4/mistral-7b-sft-beta) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5082 - Rewards/chosen: 0.0025 - Rewards/rejected: -0.9047 - Rewards/accuracies: 0.7222 - Rewards/margins: 0.9072 - Logps/rejected: -276.6852 - Logps/chosen: -271.8461 - Logits/rejected: -2.7167 - Logits/chosen: -2.7365 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.5795 | 0.1047 | 100 | 0.5875 | 0.0265 | -0.3721 | 0.6825 | 0.3986 | -271.3593 | -271.6063 | -2.7688 | -2.7900 | | 0.5449 | 0.2094 | 200 | 0.5520 | 0.0601 | -0.5726 | 0.7103 | 0.6327 | -273.3645 | -271.2704 | -2.7792 | -2.7981 | | 0.545 | 0.3141 | 300 | 0.5320 | -0.0197 | -0.7637 | 0.7044 | 0.7439 | -275.2751 | -272.0686 | -2.7616 | -2.7803 | | 0.4747 | 0.4187 | 400 | 0.5228 | -0.1728 | -0.9527 | 0.7004 | 0.7798 | -277.1651 | -273.5996 | -2.7532 | -2.7732 | | 0.5367 | 0.5234 | 500 | 0.5175 | -0.2142 | -1.0435 | 0.7143 | 0.8293 | -278.0737 | -274.0135 | -2.7339 | -2.7540 | | 0.5031 | 0.6281 | 600 | 0.5139 | -0.2939 | -1.1329 | 0.7024 | 0.8389 | -278.9670 | -274.8105 | -2.7071 | -2.7268 | | 0.5057 | 0.7328 | 700 | 0.5084 | -0.0108 | -0.9049 | 0.7202 | 0.8941 | -276.6876 | -271.9794 | -2.7207 | -2.7404 | | 0.5172 | 0.8375 | 800 | 0.5090 | -0.0300 | -0.9231 | 0.7183 | 0.8931 | -276.8697 | -272.1711 | -2.7173 | -2.7371 | | 0.5173 | 0.9422 | 900 | 0.5084 | -0.0008 | -0.9080 | 0.7222 | 0.9072 | -276.7181 | -271.8789 | -2.7174 | -2.7372 | ### Framework versions - PEFT 0.7.1 - Transformers 4.45.2 - Pytorch 2.4.0+cu121 - Datasets 2.14.6 - Tokenizers 0.20.1