Adding the Open Portuguese LLM Leaderboard Evaluation Results
Browse filesThis is an automated PR created with https://huggingface.co/spaces/eduagarcia-temp/portuguese-leaderboard-results-to-modelcard
The purpose of this PR is to add evaluation results from the Open Portuguese LLM Leaderboard to your model card.
If you encounter any issues, please report them to https://huggingface.co/spaces/eduagarcia-temp/portuguese-leaderboard-results-to-modelcard/discussions
README.md
CHANGED
@@ -5,9 +5,9 @@ tags:
|
|
5 |
- trl
|
6 |
- sft
|
7 |
- generated_from_trainer
|
|
|
8 |
datasets:
|
9 |
- generator
|
10 |
-
base_model: HuggingFaceH4/zephyr-7b-beta
|
11 |
model-index:
|
12 |
- name: WeniGPT-2.2.3-Zephyr-7B-LLM_Base_2.0.3_SFT
|
13 |
results: []
|
@@ -69,4 +69,22 @@ The following hyperparameters were used during training:
|
|
69 |
- Transformers 4.37.0.dev0
|
70 |
- Pytorch 2.1.0+cu118
|
71 |
- Datasets 2.16.1
|
72 |
-
- Tokenizers 0.15.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
- trl
|
6 |
- sft
|
7 |
- generated_from_trainer
|
8 |
+
base_model: HuggingFaceH4/zephyr-7b-beta
|
9 |
datasets:
|
10 |
- generator
|
|
|
11 |
model-index:
|
12 |
- name: WeniGPT-2.2.3-Zephyr-7B-LLM_Base_2.0.3_SFT
|
13 |
results: []
|
|
|
69 |
- Transformers 4.37.0.dev0
|
70 |
- Pytorch 2.1.0+cu118
|
71 |
- Datasets 2.16.1
|
72 |
+
- Tokenizers 0.15.0
|
73 |
+
|
74 |
+
# Open Portuguese LLM Leaderboard Evaluation Results
|
75 |
+
|
76 |
+
Detailed results can be found [here](https://huggingface.co/datasets/eduagarcia-temp/llm_pt_leaderboard_raw_results/tree/main/Weni/WeniGPT-2.2.3-Zephyr-7B-LLM_Base_2.0.3_SFT) and on the [🚀 Open Portuguese LLM Leaderboard](https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard)
|
77 |
+
|
78 |
+
| Metric | Value |
|
79 |
+
|--------------------------|---------|
|
80 |
+
|Average |**45.86**|
|
81 |
+
|ENEM Challenge (No Images)| 23.58|
|
82 |
+
|BLUEX (No Images) | 28.79|
|
83 |
+
|OAB Exams | 26.33|
|
84 |
+
|Assin2 RTE | 87.01|
|
85 |
+
|Assin2 STS | 28.33|
|
86 |
+
|FaQuAD NLI | 44.66|
|
87 |
+
|HateBR Binary | 66.91|
|
88 |
+
|PT Hate Speech Binary | 56.25|
|
89 |
+
|tweetSentBR | 50.88|
|
90 |
+
|