ironrock commited on
Commit
ac552b4
1 Parent(s): 32f735c

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +60 -55
README.md CHANGED
@@ -1,85 +1,90 @@
1
  ---
2
  license: mit
3
- library_name: peft
4
  tags:
5
- - trl
6
- - kto
7
- - generated_from_trainer
8
  base_model: HuggingFaceH4/zephyr-7b-beta
9
  model-index:
10
- - name: WeniGPT-QA-Zephyr-7B-4.0.0-KTO
11
  results: []
 
12
  ---
13
 
14
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
- should probably proofread and complete it, then remove this comment. -->
16
 
17
- # WeniGPT-QA-Zephyr-7B-4.0.0-KTO
18
 
19
- This model is a fine-tuned version of [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) on the None dataset.
20
  It achieves the following results on the evaluation set:
21
- - Loss: 0.0172
22
- - Rewards/chosen: 5.2018
23
- - Rewards/rejected: -101.1277
24
- - Rewards/margins: 106.3295
25
- - Kl: 0.6591
26
- - Logps/chosen: -123.7008
27
- - Logps/rejected: -1204.3472
28
 
29
- ## Model description
30
 
31
- More information needed
32
 
33
- ## Intended uses & limitations
34
 
35
- More information needed
36
 
37
- ## Training and evaluation data
 
 
 
 
 
 
38
 
39
- More information needed
 
40
 
41
- ## Training procedure
 
 
 
 
 
 
 
 
 
42
 
43
  ### Training hyperparameters
44
 
45
  The following hyperparameters were used during training:
46
  - learning_rate: 0.0002
47
- - train_batch_size: 2
48
- - eval_batch_size: 2
49
- - seed: 42
50
  - gradient_accumulation_steps: 8
 
51
  - total_train_batch_size: 16
52
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
- - lr_scheduler_type: linear
54
- - lr_scheduler_warmup_ratio: 0.03
55
- - training_steps: 786
56
- - mixed_precision_training: Native AMP
57
 
58
  ### Training results
59
 
60
- | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/margins | Kl | Logps/chosen | Logps/rejected |
61
- |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:---------------:|:------:|:------------:|:--------------:|
62
- | 124.9389 | 0.19 | 50 | 0.0980 | 4.3712 | -4.4622 | 8.8334 | 3.2830 | -132.0074 | -237.6924 |
63
- | 10.8269 | 0.38 | 100 | 0.0399 | 4.0267 | -34.8306 | 38.8572 | 0.7623 | -135.4527 | -541.3764 |
64
- | 276.3512 | 0.57 | 150 | 0.0280 | 4.7987 | -20.4823 | 25.2810 | 1.6861 | -127.7321 | -397.8935 |
65
- | 5.7214 | 0.76 | 200 | 0.0299 | 5.0010 | -21.9689 | 26.9699 | 1.5452 | -125.7095 | -412.7599 |
66
- | 207.9747 | 0.94 | 250 | 0.0262 | 4.8172 | -61.3154 | 66.1326 | 1.1824 | -127.5472 | -806.2249 |
67
- | 25.0348 | 1.13 | 300 | 0.0206 | 4.9858 | -70.8381 | 75.8240 | 1.4845 | -125.8608 | -901.4517 |
68
- | 3.1951 | 1.32 | 350 | 0.0265 | 4.6896 | -82.7767 | 87.4663 | 0.6364 | -128.8232 | -1020.8375 |
69
- | 68.7248 | 1.51 | 400 | 0.0201 | 5.0567 | -53.7706 | 58.8272 | 1.2176 | -125.1527 | -730.7762 |
70
- | 10.659 | 1.7 | 450 | 0.0263 | 4.9077 | -76.2636 | 81.1714 | 0.8826 | -126.6419 | -955.7070 |
71
- | 177.5836 | 1.89 | 500 | 0.0187 | 5.1836 | -82.5033 | 87.6869 | 0.4794 | -123.8830 | -1018.1035 |
72
- | 15.4933 | 2.08 | 550 | 0.0281 | 4.7980 | -95.1968 | 99.9948 | 0.9202 | -127.7392 | -1145.0382 |
73
- | 3.827 | 2.27 | 600 | 0.0178 | 5.0335 | -96.9958 | 102.0293 | 0.4925 | -125.3841 | -1163.0284 |
74
- | 16.3759 | 2.45 | 650 | 0.0194 | 5.1136 | -106.3420 | 111.4556 | 0.6069 | -124.5831 | -1256.4906 |
75
- | 7.4087 | 2.64 | 700 | 0.0172 | 5.2018 | -101.1277 | 106.3295 | 0.6591 | -123.7008 | -1204.3472 |
76
- | 23.8901 | 2.83 | 750 | 0.0177 | 5.2007 | -102.1235 | 107.3241 | 0.6737 | -123.7124 | -1214.3054 |
77
-
78
-
79
  ### Framework versions
80
 
81
- - PEFT 0.10.0
82
- - Transformers 4.39.1
83
- - Pytorch 2.1.0+cu118
84
- - Datasets 2.18.0
85
- - Tokenizers 0.15.2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ library_name: "trl"
4
  tags:
5
+ - KTO
6
+ - WeniGPT
 
7
  base_model: HuggingFaceH4/zephyr-7b-beta
8
  model-index:
9
+ - name: Weni/WeniGPT-QA-Zephyr-7B-4.0.0-KTO
10
  results: []
11
+ language: ['pt']
12
  ---
13
 
14
+ # Weni/WeniGPT-QA-Zephyr-7B-4.0.0-KTO
 
15
 
16
+ This model is a fine-tuned version of [HuggingFaceH4/zephyr-7b-beta] on the dataset Weni/WeniGPT-QA-Binarized-1.2.0 with the KTO trainer. It is part of the WeniGPT project for [Weni](https://weni.ai/).
17
 
 
18
  It achieves the following results on the evaluation set:
19
+ {'eval_loss': 0.017178179696202278, 'eval_runtime': 474.7979, 'eval_samples_per_second': 1.07, 'eval_steps_per_second': 0.535, 'eval_rewards/chosen': 5.201839923858643, 'eval_rewards/rejected': -101.12767791748047, 'eval_rewards/margins': 106.32951354980469, 'eval_kl': 0.6591044664382935, 'eval_logps/chosen': -123.7008285522461, 'eval_logps/rejected': -1204.34716796875, 'epoch': 2.97}
 
 
 
 
 
 
20
 
21
+ ## Intended uses & limitations
22
 
23
+ This model has not been trained to avoid specific intructions.
24
 
25
+ ## Training procedure
26
 
27
+ Finetuning was done on the model HuggingFaceH4/zephyr-7b-beta with the following prompt:
28
 
29
+ ```
30
+ ---------------------
31
+ Question:
32
+ <|system|>
33
+ Você é um médico tratando um paciente com amnésia. Para responder as perguntas do paciente, você irá ler um texto anteriormente para se contextualizar. Se você trouxer informações desconhecidas, fora do texto lido, poderá deixar o paciente confuso. Se o paciente fizer uma questão sobre informações não presentes no texto, você precisa responder de forma educada que você não tem informação suficiente para responder, pois se tentar responder, pode trazer informações que não ajudarão o paciente recuperar sua memória. Lembre, se não estiver no texto, você precisa responder de forma educada que você não tem informação suficiente para responder. Precisamos ajudar o paciente.
34
+ <|user|>
35
+ Contexto: {context}
36
 
37
+ Questão: {question}</s>
38
+ <|assistant|>
39
 
40
+
41
+
42
+ ---------------------
43
+ Response:
44
+ {response}</s>
45
+
46
+
47
+ ---------------------
48
+
49
+ ```
50
 
51
  ### Training hyperparameters
52
 
53
  The following hyperparameters were used during training:
54
  - learning_rate: 0.0002
55
+ - per_device_train_batch_size: 2
56
+ - per_device_eval_batch_size: 2
 
57
  - gradient_accumulation_steps: 8
58
+ - num_gpus: 1
59
  - total_train_batch_size: 16
60
+ - optimizer: AdamW
61
+ - lr_scheduler_type: cosine
62
+ - num_steps: 786
63
+ - quantization_type: bitsandbytes
64
+ - LoRA: ("\n - bits: 4\n - use_exllama: True\n - device_map: auto\n - use_cache: False\n - lora_r: 16\n - lora_alpha: 32\n - lora_dropout: 0.05\n - bias: none\n - target_modules: ['q_proj', 'k_proj', 'v_proj', 'o_proj']\n - task_type: CAUSAL_LM",)
65
 
66
  ### Training results
67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
  ### Framework versions
69
 
70
+ - transformers==4.39.1
71
+ - datasets==2.18.0
72
+ - peft==0.10.0
73
+ - safetensors==0.4.2
74
+ - evaluate==0.4.1
75
+ - bitsandbytes==0.43
76
+ - huggingface_hub==0.20.3
77
+ - seqeval==1.2.2
78
+ - optimum==1.17.1
79
+ - auto-gptq==0.7.1
80
+ - gpustat==1.1.1
81
+ - deepspeed==0.14.0
82
+ - wandb==0.16.3
83
+ - trl==0.8.1
84
+ - accelerate==0.28.0
85
+ - coloredlogs==15.0.1
86
+ - traitlets==5.14.1
87
+ - autoawq@https://github.com/casper-hansen/AutoAWQ/releases/download/v0.2.0/autoawq-0.2.0+cu118-cp310-cp310-linux_x86_64.whl
88
+
89
+ ### Hardware
90
+ - Cloud provided: runpod.io