Wexnflex commited on
Commit
fa4c5bd
·
verified ·
1 Parent(s): 874e30f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +35 -122
README.md CHANGED
@@ -1,11 +1,14 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
4
  ---
5
 
6
  # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
10
 
11
 
@@ -15,185 +18,95 @@ tags: []
15
 
16
  <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
 
45
 
46
  ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
 
64
  ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
  Use the code below to get started with the model.
73
 
74
- [More Information Needed]
75
-
76
- ## Training Details
77
 
78
- ### Training Data
 
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
 
 
 
81
 
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
 
92
 
93
  #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
 
 
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
 
109
  #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
 
113
- [More Information Needed]
114
 
115
  #### Factors
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
 
119
- [More Information Needed]
120
 
121
  #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
 
127
  ### Results
128
 
129
- [More Information Needed]
130
-
131
  #### Summary
132
 
 
133
 
134
 
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
  ## Technical Specifications [optional]
154
 
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
 
163
  #### Hardware
164
 
165
- [More Information Needed]
166
-
167
  #### Software
168
 
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ datasets:
4
+ - mteb/tweet_sentiment_extraction
5
+ base_model:
6
+ - openai-community/gpt2
7
  ---
8
 
9
  # Model Card for Model ID
10
 
11
+ This model fine-tunes GPT-2 on the "Tweet Sentiment Extraction" dataset for sentiment analysis tasks.
12
 
13
 
14
 
 
18
 
19
  <!-- Provide a longer summary of what this model is. -->
20
 
21
+ This model fine-tunes GPT-2 using the "Tweet Sentiment Extraction" dataset to extract sentiment-relevant portions of text.
22
+ It demonstrates preprocessing, tokenization, and fine-tuning with Hugging Face libraries.
23
 
 
 
 
 
 
 
 
24
 
 
 
 
 
 
 
 
25
 
26
  ## Uses
27
 
 
28
 
 
29
 
30
+ ### Direct Use
31
 
32
+ This model can be used to analyze text for sentiment-relevant extractions directly after fine-tuning.
33
+ It works as a baseline model for learning sentiment-specific features.
34
 
35
  ### Downstream Use [optional]
36
 
37
+ Fine-tuned for tasks that involve sentiment analysis, such as social media monitoring or customer feedback analysis.
38
 
 
39
 
40
  ### Out-of-Scope Use
41
 
42
+ Avoid using the model for real-time sentiment prediction or deployment without additional training/testing for specific use cases.
43
 
 
44
 
45
  ## Bias, Risks, and Limitations
46
 
47
+ The dataset used may not fully represent the diversity of text, leading to biases in the output. There is a risk of overfitting to the specific dataset.
 
 
48
 
49
  ### Recommendations
50
 
51
+ Carefully evaluate the model for biases and limitations before deploying in production environments. Consider retraining on a more diverse dataset if required.
52
 
 
53
 
54
  ## How to Get Started with the Model
55
 
56
  Use the code below to get started with the model.
57
 
58
+ ```python
59
+ from transformers import AutoModelForCausalLM, AutoTokenizer
 
60
 
61
+ model = AutoModelForCausalLM.from_pretrained("https://huggingface.co/Wexnflex/Tweet_Sentiment")
62
+ tokenizer = AutoTokenizer.from_pretrained("https://huggingface.co/Wexnflex/Tweet_Sentiment")
63
 
64
+ text = "Input your text here."
65
+ inputs = tokenizer(text, return_tensors="pt")
66
+ outputs = model.generate(**inputs)
67
+ print(tokenizer.decode(outputs[0]))
68
 
 
 
 
 
 
 
 
 
 
69
 
70
 
71
  #### Training Hyperparameters
72
 
73
+ Training Hyperparameters
74
+ Batch size: 16
75
+ Learning rate: 2e-5
76
+ Epochs: 3
77
+ Optimizer: AdamW
78
 
79
+ #### Testing Data, Factors & Metrics
 
 
 
 
 
 
 
 
80
 
81
  #### Testing Data
82
 
83
+ The evaluation was performed on the test split of the "Tweet Sentiment Extraction" dataset.
84
 
 
85
 
86
  #### Factors
87
 
88
+ Evaluation is segmented by sentiment labels (e.g., positive, negative, neutral).
89
 
 
90
 
91
  #### Metrics
92
 
93
+ Accuracy
 
 
94
 
95
  ### Results
96
 
97
+ 70% Accuracy
 
98
  #### Summary
99
 
100
+ The fine-tuned model performs well for extracting sentiment-relevant text, with room for improvement in handling ambiguous cases.
101
 
102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103
  ## Technical Specifications [optional]
104
 
 
 
 
 
 
 
 
105
 
106
  #### Hardware
107
 
108
+ T4 GPU (Google Colab)
 
109
  #### Software
110
 
111
+ Hugging Face Transformers Library
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112