Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- README.md +239 -0
- added_tokens.json +6 -0
- checkpoint-500/added_tokens.json +6 -0
- checkpoint-500/config.json +27 -0
- checkpoint-500/generation_config.json +7 -0
- checkpoint-500/global_step500/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-500/global_step500/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-500/global_step500/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- checkpoint-500/global_step500/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- checkpoint-500/global_step500/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
- checkpoint-500/global_step500/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
- checkpoint-500/global_step500/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
- checkpoint-500/global_step500/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
- checkpoint-500/global_step500/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- checkpoint-500/global_step500/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- checkpoint-500/global_step500/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
- checkpoint-500/global_step500/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
- checkpoint-500/global_step500/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
- checkpoint-500/global_step500/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
- checkpoint-500/global_step500/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
- checkpoint-500/global_step500/zero_pp_rank_7_mp_rank_00_model_states.pt +3 -0
- checkpoint-500/latest +1 -0
- checkpoint-500/merges.txt +0 -0
- checkpoint-500/model-00001-of-00004.safetensors +3 -0
- checkpoint-500/model-00002-of-00004.safetensors +3 -0
- checkpoint-500/model-00003-of-00004.safetensors +3 -0
- checkpoint-500/model-00004-of-00004.safetensors +3 -0
- checkpoint-500/model.safetensors.index.json +346 -0
- checkpoint-500/rng_state_0.pth +3 -0
- checkpoint-500/rng_state_1.pth +3 -0
- checkpoint-500/rng_state_2.pth +3 -0
- checkpoint-500/rng_state_3.pth +3 -0
- checkpoint-500/rng_state_4.pth +3 -0
- checkpoint-500/rng_state_5.pth +3 -0
- checkpoint-500/rng_state_6.pth +3 -0
- checkpoint-500/rng_state_7.pth +3 -0
- checkpoint-500/scheduler.pt +3 -0
- checkpoint-500/special_tokens_map.json +20 -0
- checkpoint-500/tokenizer.json +0 -0
- checkpoint-500/tokenizer_config.json +51 -0
- checkpoint-500/trainer_state.json +3561 -0
- checkpoint-500/training_args.bin +3 -0
- checkpoint-500/vocab.json +0 -0
- checkpoint-500/zero_to_fp32.py +604 -0
- config.json +28 -0
- generation_config.json +7 -0
- merges.txt +0 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
README.md
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: Qwen/Qwen2-7B
|
4 |
+
tags:
|
5 |
+
- axolotl
|
6 |
+
- generated_from_trainer
|
7 |
+
model-index:
|
8 |
+
- name: Einstein-v7-Qwen2-7B
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|
16 |
+
<details><summary>See axolotl config</summary>
|
17 |
+
|
18 |
+
axolotl version: `0.4.0`
|
19 |
+
```yaml
|
20 |
+
base_model: Qwen/Qwen2-7B
|
21 |
+
model_type: AutoModelForCausalLM
|
22 |
+
tokenizer_type: AutoTokenizer
|
23 |
+
|
24 |
+
load_in_8bit: false
|
25 |
+
load_in_4bit: false
|
26 |
+
strict: false
|
27 |
+
|
28 |
+
chat_template: chatml
|
29 |
+
datasets:
|
30 |
+
- path: data/airoboros_3.2_without_contextual_slimorca_orca_sharegpt.json
|
31 |
+
ds_type: json
|
32 |
+
type: sharegpt
|
33 |
+
conversation: chatml
|
34 |
+
|
35 |
+
- path: data/allenai_wild_chat_gpt4_english_toxic_random_half_4k_sharegpt.json
|
36 |
+
ds_type: json
|
37 |
+
type: sharegpt
|
38 |
+
strict: false
|
39 |
+
conversation: chatml
|
40 |
+
|
41 |
+
- path: data/buzz_unstacked_chosen_math_removed_filtered.json
|
42 |
+
ds_type: json
|
43 |
+
type: alpaca
|
44 |
+
conversation: chatml
|
45 |
+
|
46 |
+
- path: data/capybara_sharegpt.json
|
47 |
+
ds_type: json
|
48 |
+
type: sharegpt
|
49 |
+
conversation: chatml
|
50 |
+
|
51 |
+
- path: data/cot_alpaca_gpt4_extracted_openhermes_2.5_sharegpt.json
|
52 |
+
ds_type: json
|
53 |
+
type: sharegpt
|
54 |
+
conversation: chatml
|
55 |
+
|
56 |
+
- path: data/everythinglm-data-v3_sharegpt.json
|
57 |
+
ds_type: json
|
58 |
+
type: sharegpt
|
59 |
+
strict: false
|
60 |
+
conversation: chatml
|
61 |
+
|
62 |
+
- path: data/gpt4_data_lmys_1m_sharegpt.json
|
63 |
+
ds_type: json
|
64 |
+
type: sharegpt
|
65 |
+
conversation: chatml
|
66 |
+
|
67 |
+
- path: data/gpteacher-instruct-special-alpaca.json
|
68 |
+
ds_type: json
|
69 |
+
type: gpteacher
|
70 |
+
conversation: chatml
|
71 |
+
|
72 |
+
- path: data/merged_all.json
|
73 |
+
ds_type: json
|
74 |
+
type: alpaca
|
75 |
+
conversation: chatml
|
76 |
+
|
77 |
+
- path: data/no_robots_sharegpt.json
|
78 |
+
ds_type: json
|
79 |
+
type: sharegpt
|
80 |
+
strict: false
|
81 |
+
conversation: chatml
|
82 |
+
|
83 |
+
- path: data/oasst_top1_from_fusechatmixture_sharegpt.json
|
84 |
+
ds_type: json
|
85 |
+
type: sharegpt
|
86 |
+
strict: false
|
87 |
+
conversation: chatml
|
88 |
+
|
89 |
+
- path: data/pippa_bagel_repo_3k_sharegpt.json
|
90 |
+
ds_type: json
|
91 |
+
type: sharegpt
|
92 |
+
conversation: chatml
|
93 |
+
|
94 |
+
- path: data/rpguild_quarter_alignment_lab_sharegpt.json
|
95 |
+
ds_type: json
|
96 |
+
type: sharegpt
|
97 |
+
conversation: chatml
|
98 |
+
|
99 |
+
- path: data/sharegpt_gpt4_english.json
|
100 |
+
ds_type: json
|
101 |
+
type: sharegpt
|
102 |
+
conversation: chatml
|
103 |
+
|
104 |
+
- path: data/slimorca_dedup_filtered_95k_sharegpt.json
|
105 |
+
ds_type: json
|
106 |
+
type: sharegpt
|
107 |
+
conversation: chatml
|
108 |
+
|
109 |
+
- path: data/soda_diaolog_longest_tenth_buzz_sharegpt.json
|
110 |
+
ds_type: json
|
111 |
+
type: sharegpt
|
112 |
+
conversation: chatml
|
113 |
+
|
114 |
+
- path: data/synthia-v1.3_sharegpt_12500.json
|
115 |
+
ds_type: json
|
116 |
+
type: sharegpt
|
117 |
+
conversation: chatml
|
118 |
+
|
119 |
+
- path: data/system_conversations_dolphin_sharegpt.json
|
120 |
+
ds_type: json
|
121 |
+
type: sharegpt
|
122 |
+
conversation: chatml
|
123 |
+
|
124 |
+
dataset_prepared_path: last_run_prepared
|
125 |
+
val_set_size: 0.002
|
126 |
+
|
127 |
+
output_dir: ./Einstein-v7-Qwen2-7B-model
|
128 |
+
|
129 |
+
sequence_len: 8192
|
130 |
+
sample_packing: true
|
131 |
+
pad_to_sequence_len: true
|
132 |
+
eval_sample_packing: false
|
133 |
+
|
134 |
+
wandb_project: Einstein
|
135 |
+
wandb_entity:
|
136 |
+
wandb_watch:
|
137 |
+
wandb_name:
|
138 |
+
wandb_log_model:
|
139 |
+
hub_model_id: Weyaxi/Einstein-v7-Qwen2-7B
|
140 |
+
|
141 |
+
gradient_accumulation_steps: 4
|
142 |
+
micro_batch_size: 6
|
143 |
+
num_epochs: 2
|
144 |
+
optimizer: paged_adamw_8bit
|
145 |
+
lr_scheduler: cosine
|
146 |
+
learning_rate: 0.00001 # look
|
147 |
+
|
148 |
+
train_on_inputs: false
|
149 |
+
group_by_length: false
|
150 |
+
bf16: auto
|
151 |
+
fp16:
|
152 |
+
tf32: false
|
153 |
+
|
154 |
+
gradient_checkpointing: unsloth
|
155 |
+
gradient_checkpointing_kwargs:
|
156 |
+
use_reentrant: true # look
|
157 |
+
early_stopping_patience:
|
158 |
+
resume_from_checkpoint:
|
159 |
+
local_rank:
|
160 |
+
logging_steps: 1
|
161 |
+
xformers_attention:
|
162 |
+
flash_attention: true
|
163 |
+
|
164 |
+
warmup_steps: 10
|
165 |
+
evals_per_epoch: 2
|
166 |
+
eval_table_size:
|
167 |
+
eval_max_new_tokens: 128
|
168 |
+
saves_per_epoch: 1
|
169 |
+
debug:
|
170 |
+
|
171 |
+
deepspeed: deepspeed_configs/zero3_bf16.json
|
172 |
+
weight_decay: 0.05
|
173 |
+
fsdp:
|
174 |
+
fsdp_config:
|
175 |
+
special_tokens:
|
176 |
+
eos_token: "<|im_end|>"
|
177 |
+
pad_token: "<|end_of_text|>"
|
178 |
+
tokens:
|
179 |
+
- "<|im_start|>"
|
180 |
+
- "<|im_end|>"
|
181 |
+
|
182 |
+
```
|
183 |
+
|
184 |
+
</details><br>
|
185 |
+
|
186 |
+
# Einstein-v7-Qwen2-7B
|
187 |
+
|
188 |
+
This model is a fine-tuned version of [Qwen/Qwen2-7B](https://huggingface.co/Qwen/Qwen2-7B) on the None dataset.
|
189 |
+
It achieves the following results on the evaluation set:
|
190 |
+
- Loss: 0.6983
|
191 |
+
|
192 |
+
## Model description
|
193 |
+
|
194 |
+
More information needed
|
195 |
+
|
196 |
+
## Intended uses & limitations
|
197 |
+
|
198 |
+
More information needed
|
199 |
+
|
200 |
+
## Training and evaluation data
|
201 |
+
|
202 |
+
More information needed
|
203 |
+
|
204 |
+
## Training procedure
|
205 |
+
|
206 |
+
### Training hyperparameters
|
207 |
+
|
208 |
+
The following hyperparameters were used during training:
|
209 |
+
- learning_rate: 1e-05
|
210 |
+
- train_batch_size: 6
|
211 |
+
- eval_batch_size: 6
|
212 |
+
- seed: 42
|
213 |
+
- distributed_type: multi-GPU
|
214 |
+
- num_devices: 8
|
215 |
+
- gradient_accumulation_steps: 4
|
216 |
+
- total_train_batch_size: 192
|
217 |
+
- total_eval_batch_size: 48
|
218 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
219 |
+
- lr_scheduler_type: cosine
|
220 |
+
- lr_scheduler_warmup_steps: 10
|
221 |
+
- num_epochs: 2
|
222 |
+
|
223 |
+
### Training results
|
224 |
+
|
225 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
226 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
227 |
+
| 0.9189 | 0.0 | 1 | 0.8840 |
|
228 |
+
| 0.7368 | 0.5 | 125 | 0.7193 |
|
229 |
+
| 0.7406 | 1.0 | 250 | 0.7037 |
|
230 |
+
| 0.6593 | 1.48 | 375 | 0.6996 |
|
231 |
+
| 0.6754 | 1.97 | 500 | 0.6983 |
|
232 |
+
|
233 |
+
|
234 |
+
### Framework versions
|
235 |
+
|
236 |
+
- Transformers 4.40.0.dev0
|
237 |
+
- Pytorch 2.4.0.dev20240508+rocm6.1
|
238 |
+
- Datasets 2.15.0
|
239 |
+
- Tokenizers 0.15.0
|
added_tokens.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|end_of_text|>": 151646,
|
3 |
+
"<|endoftext|>": 151643,
|
4 |
+
"<|im_end|>": 151645,
|
5 |
+
"<|im_start|>": 151644
|
6 |
+
}
|
checkpoint-500/added_tokens.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|end_of_text|>": 151646,
|
3 |
+
"<|endoftext|>": 151643,
|
4 |
+
"<|im_end|>": 151645,
|
5 |
+
"<|im_start|>": 151644
|
6 |
+
}
|
checkpoint-500/config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Qwen/Qwen2-7B",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"eos_token_id": 151645,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 3584,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 18944,
|
12 |
+
"max_position_embeddings": 131072,
|
13 |
+
"max_window_layers": 28,
|
14 |
+
"model_type": "qwen2",
|
15 |
+
"num_attention_heads": 28,
|
16 |
+
"num_hidden_layers": 28,
|
17 |
+
"num_key_value_heads": 4,
|
18 |
+
"rms_norm_eps": 1e-06,
|
19 |
+
"rope_theta": 1000000.0,
|
20 |
+
"sliding_window": 131072,
|
21 |
+
"tie_word_embeddings": false,
|
22 |
+
"torch_dtype": "bfloat16",
|
23 |
+
"transformers_version": "4.40.0.dev0",
|
24 |
+
"use_cache": false,
|
25 |
+
"use_sliding_window": false,
|
26 |
+
"vocab_size": 152064
|
27 |
+
}
|
checkpoint-500/generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": 151643,
|
5 |
+
"max_new_tokens": 2048,
|
6 |
+
"transformers_version": "4.40.0.dev0"
|
7 |
+
}
|
checkpoint-500/global_step500/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:226020039fecd1670e02302ba8d2124ccc49580310fa41ce7984f538b3d16766
|
3 |
+
size 5716169251
|
checkpoint-500/global_step500/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c1199951eb26c1a658f27ecf4ea19136921370f8c2c36a6e499d12f0ae86c354
|
3 |
+
size 5716169251
|
checkpoint-500/global_step500/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:83ae7b10c5ec2a2767c728b6985cc362f79fc621021130cce9eb82c7274bc90c
|
3 |
+
size 5716169251
|
checkpoint-500/global_step500/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d226b9dc33d0558acc1e7519686ba1fab16f952d4f5fc4be1712a5f6421e59bd
|
3 |
+
size 5716169251
|
checkpoint-500/global_step500/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:65d4f2403432a6049565b7212b2eb226baab152ec0ce6e733b5c8954b38fc867
|
3 |
+
size 5716169251
|
checkpoint-500/global_step500/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eeece00898602ab131f81c4491caaaaf507351a3f40e7fd308d6767353485850
|
3 |
+
size 5716169251
|
checkpoint-500/global_step500/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c05cead029cd470b5533740e9165be56e8efd224f5972f4ea8a780360b2ebdcf
|
3 |
+
size 5716169251
|
checkpoint-500/global_step500/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d342ac1ed4b7e6a3bd1e6a98e8c3921aba9e855b336a5680b0345da1173e993f
|
3 |
+
size 5716169251
|
checkpoint-500/global_step500/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8a5f982290cc9a877338f69b8c20701b958a19e007ec5699307c0a8199264325
|
3 |
+
size 171605
|
checkpoint-500/global_step500/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:689394a6137430bef959c423ec75415ee05814e05a2fda78d892475556074cd2
|
3 |
+
size 171605
|
checkpoint-500/global_step500/zero_pp_rank_2_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae652cca71c22c7a58e86deab6e000979a9285be725fe2caafaae5314cfb2d85
|
3 |
+
size 171605
|
checkpoint-500/global_step500/zero_pp_rank_3_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:452532268dd0c41b5a07e3d8641bd75e8a54c90c420b074d606948c0a834f174
|
3 |
+
size 171605
|
checkpoint-500/global_step500/zero_pp_rank_4_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:92b5d1cb07d60aaba8b91ec8cba3adc3a2b3da4e12f103e63888c0f0a9a33807
|
3 |
+
size 171605
|
checkpoint-500/global_step500/zero_pp_rank_5_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e6459e6cc0f3738c7f4bef34d23c484fad1ff5dcc2f123033eec0daedd73b354
|
3 |
+
size 171605
|
checkpoint-500/global_step500/zero_pp_rank_6_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dddf9aa1dbaf0833a7d190dc973e32da8b337f7e7d418f2ef56355cca12ae8a9
|
3 |
+
size 171605
|
checkpoint-500/global_step500/zero_pp_rank_7_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:50740920ed0f156846d230aacda455448a356949592f9fb78cd62d8388a2a2cd
|
3 |
+
size 171605
|
checkpoint-500/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step500
|
checkpoint-500/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-500/model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f421710e83034813f0366192f32dd36a6005990365885d2b7b3fad1f95ee71a1
|
3 |
+
size 4877660776
|
checkpoint-500/model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:90ee3add1c94133fccf2b4c5a11fdea6167e7de07c2f58f1cbfc8e7da0844518
|
3 |
+
size 4932751008
|
checkpoint-500/model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:61e3e7d2c4b53ec95c1ad1e8a2c2770709a5ab20cb556486922f3722569615e8
|
3 |
+
size 4330865200
|
checkpoint-500/model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d7bb33e9d51c137141218117b751ad1da933bd40ac5c30ca729aea7e79c68ed7
|
3 |
+
size 1089994880
|
checkpoint-500/model.safetensors.index.json
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 15231233024
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
32 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
44 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
56 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
68 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
80 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
92 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
104 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
116 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
128 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
140 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
164 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
176 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
188 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
200 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
212 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
224 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
236 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
248 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
260 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
261 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
262 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
263 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
264 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
265 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
266 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
267 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
268 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
269 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
270 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
271 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
272 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
273 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
274 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
275 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
276 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
277 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
278 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
279 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
280 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
281 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
282 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
283 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
284 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
285 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
286 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
287 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
288 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
289 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
290 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
291 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
292 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
293 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
294 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
295 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
296 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
297 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
298 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
299 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
300 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
301 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
302 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
303 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
304 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
305 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
306 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
307 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
308 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
309 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
310 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
311 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
312 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
313 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
314 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
315 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
316 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
317 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
318 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
319 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
320 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
321 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
322 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
323 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
324 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
325 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
326 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
327 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
328 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
329 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
330 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
331 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
332 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
333 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
334 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
335 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
336 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
337 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
338 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
339 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
340 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
341 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
342 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
343 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
344 |
+
"model.norm.weight": "model-00003-of-00004.safetensors"
|
345 |
+
}
|
346 |
+
}
|
checkpoint-500/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:31a89b0384f9bb1822e4729d969cea6e7ee72e8284f449afe40d72529b41495f
|
3 |
+
size 15984
|
checkpoint-500/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a1f63b4012f7c44010911fca257140455b8dcc0348facde0081110fb01a2f4b3
|
3 |
+
size 15984
|
checkpoint-500/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c8269445fce1fb57423c61c2fbea5530b846483a0f14d361f41387cbc698ee0
|
3 |
+
size 15984
|
checkpoint-500/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e0e477ac830ad4ca17a759dbe236dae36761137b0b63d36efc7601491878041f
|
3 |
+
size 15984
|
checkpoint-500/rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:39949e929ac968a737922a436fd778057a7a82cfc15aee973b3a9ee99b62bd08
|
3 |
+
size 15984
|
checkpoint-500/rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6aa4704a1dedee3f2891294940d4109acf4223e8c1c28954bd988ce0426e7c25
|
3 |
+
size 15984
|
checkpoint-500/rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad2a762f21c2627156c6e10036844c58d0324aa751a1aa366677ddbc962fc5f7
|
3 |
+
size 15984
|
checkpoint-500/rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:041214fd2afb837bfa2045787db59e297593ae66156089783d80a17a7857e109
|
3 |
+
size 15984
|
checkpoint-500/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bffd28705f667fd2d53cbf38bdbf3ad68a22d34ececb929729232ad695ef0953
|
3 |
+
size 1064
|
checkpoint-500/special_tokens_map.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>"
|
5 |
+
],
|
6 |
+
"eos_token": {
|
7 |
+
"content": "<|im_end|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"pad_token": {
|
14 |
+
"content": "<|end_of_text|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false
|
19 |
+
}
|
20 |
+
}
|
checkpoint-500/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-500/tokenizer_config.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"151643": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"151644": {
|
13 |
+
"content": "<|im_start|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": false
|
19 |
+
},
|
20 |
+
"151645": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": false
|
27 |
+
},
|
28 |
+
"151646": {
|
29 |
+
"content": "<|end_of_text|>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
}
|
36 |
+
},
|
37 |
+
"additional_special_tokens": [
|
38 |
+
"<|im_start|>",
|
39 |
+
"<|im_end|>"
|
40 |
+
],
|
41 |
+
"bos_token": null,
|
42 |
+
"chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
43 |
+
"clean_up_tokenization_spaces": false,
|
44 |
+
"eos_token": "<|im_end|>",
|
45 |
+
"errors": "replace",
|
46 |
+
"model_max_length": 32768,
|
47 |
+
"pad_token": "<|end_of_text|>",
|
48 |
+
"split_special_tokens": false,
|
49 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
50 |
+
"unk_token": null
|
51 |
+
}
|
checkpoint-500/trainer_state.json
ADDED
@@ -0,0 +1,3561 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.9740777666999003,
|
5 |
+
"eval_steps": 125,
|
6 |
+
"global_step": 500,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0,
|
13 |
+
"grad_norm": 1.8329473944625845,
|
14 |
+
"learning_rate": 1.0000000000000002e-06,
|
15 |
+
"loss": 0.9189,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.0,
|
20 |
+
"eval_loss": 0.8840048313140869,
|
21 |
+
"eval_runtime": 99.9262,
|
22 |
+
"eval_samples_per_second": 17.693,
|
23 |
+
"eval_steps_per_second": 0.37,
|
24 |
+
"step": 1
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.01,
|
28 |
+
"grad_norm": 1.7916344264608899,
|
29 |
+
"learning_rate": 2.0000000000000003e-06,
|
30 |
+
"loss": 0.8962,
|
31 |
+
"step": 2
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.01,
|
35 |
+
"grad_norm": 1.8909931480365287,
|
36 |
+
"learning_rate": 3e-06,
|
37 |
+
"loss": 0.8805,
|
38 |
+
"step": 3
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.02,
|
42 |
+
"grad_norm": 1.6318273112027453,
|
43 |
+
"learning_rate": 4.000000000000001e-06,
|
44 |
+
"loss": 0.913,
|
45 |
+
"step": 4
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.02,
|
49 |
+
"grad_norm": 1.2463401136319747,
|
50 |
+
"learning_rate": 5e-06,
|
51 |
+
"loss": 0.908,
|
52 |
+
"step": 5
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 0.02,
|
56 |
+
"grad_norm": 1.1463980681106876,
|
57 |
+
"learning_rate": 6e-06,
|
58 |
+
"loss": 0.8729,
|
59 |
+
"step": 6
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.03,
|
63 |
+
"grad_norm": 0.9477573494094379,
|
64 |
+
"learning_rate": 7e-06,
|
65 |
+
"loss": 0.8411,
|
66 |
+
"step": 7
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.03,
|
70 |
+
"grad_norm": 4.0165120162042935,
|
71 |
+
"learning_rate": 8.000000000000001e-06,
|
72 |
+
"loss": 1.0541,
|
73 |
+
"step": 8
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.04,
|
77 |
+
"grad_norm": 1.0713771331971476,
|
78 |
+
"learning_rate": 9e-06,
|
79 |
+
"loss": 0.8495,
|
80 |
+
"step": 9
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.04,
|
84 |
+
"grad_norm": 0.8667235558943894,
|
85 |
+
"learning_rate": 1e-05,
|
86 |
+
"loss": 0.8199,
|
87 |
+
"step": 10
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.04,
|
91 |
+
"grad_norm": 0.7411429457268661,
|
92 |
+
"learning_rate": 9.999897234791831e-06,
|
93 |
+
"loss": 0.7964,
|
94 |
+
"step": 11
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.05,
|
98 |
+
"grad_norm": 0.5729968036750446,
|
99 |
+
"learning_rate": 9.999588943391597e-06,
|
100 |
+
"loss": 0.8039,
|
101 |
+
"step": 12
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.05,
|
105 |
+
"grad_norm": 0.5402964207486183,
|
106 |
+
"learning_rate": 9.99907513847195e-06,
|
107 |
+
"loss": 0.8287,
|
108 |
+
"step": 13
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.06,
|
112 |
+
"grad_norm": 0.5633328266442124,
|
113 |
+
"learning_rate": 9.9983558411534e-06,
|
114 |
+
"loss": 0.7842,
|
115 |
+
"step": 14
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.06,
|
119 |
+
"grad_norm": 0.5412290905686791,
|
120 |
+
"learning_rate": 9.99743108100344e-06,
|
121 |
+
"loss": 0.8345,
|
122 |
+
"step": 15
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.06,
|
126 |
+
"grad_norm": 0.4895379189634968,
|
127 |
+
"learning_rate": 9.99630089603534e-06,
|
128 |
+
"loss": 0.7922,
|
129 |
+
"step": 16
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.07,
|
133 |
+
"grad_norm": 0.5088260537094976,
|
134 |
+
"learning_rate": 9.994965332706574e-06,
|
135 |
+
"loss": 0.7969,
|
136 |
+
"step": 17
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.07,
|
140 |
+
"grad_norm": 0.47075507205524136,
|
141 |
+
"learning_rate": 9.993424445916923e-06,
|
142 |
+
"loss": 0.7931,
|
143 |
+
"step": 18
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 0.08,
|
147 |
+
"grad_norm": 0.3878407143429931,
|
148 |
+
"learning_rate": 9.991678299006206e-06,
|
149 |
+
"loss": 0.8041,
|
150 |
+
"step": 19
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 0.08,
|
154 |
+
"grad_norm": 0.3873731682942636,
|
155 |
+
"learning_rate": 9.989726963751683e-06,
|
156 |
+
"loss": 0.8107,
|
157 |
+
"step": 20
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"epoch": 0.08,
|
161 |
+
"grad_norm": 0.42417629604043083,
|
162 |
+
"learning_rate": 9.987570520365105e-06,
|
163 |
+
"loss": 0.7874,
|
164 |
+
"step": 21
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.09,
|
168 |
+
"grad_norm": 0.4324680733617199,
|
169 |
+
"learning_rate": 9.98520905748941e-06,
|
170 |
+
"loss": 0.8025,
|
171 |
+
"step": 22
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.09,
|
175 |
+
"grad_norm": 0.34546199757993784,
|
176 |
+
"learning_rate": 9.982642672195093e-06,
|
177 |
+
"loss": 0.8048,
|
178 |
+
"step": 23
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 0.1,
|
182 |
+
"grad_norm": 0.35958771648273496,
|
183 |
+
"learning_rate": 9.979871469976197e-06,
|
184 |
+
"loss": 0.831,
|
185 |
+
"step": 24
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.1,
|
189 |
+
"grad_norm": 0.3940074197908444,
|
190 |
+
"learning_rate": 9.976895564745993e-06,
|
191 |
+
"loss": 0.7944,
|
192 |
+
"step": 25
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 0.1,
|
196 |
+
"grad_norm": 0.3818406187889153,
|
197 |
+
"learning_rate": 9.973715078832288e-06,
|
198 |
+
"loss": 0.7936,
|
199 |
+
"step": 26
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 0.11,
|
203 |
+
"grad_norm": 10.237346743255186,
|
204 |
+
"learning_rate": 9.970330142972403e-06,
|
205 |
+
"loss": 1.0017,
|
206 |
+
"step": 27
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.11,
|
210 |
+
"grad_norm": 6.504690612414681,
|
211 |
+
"learning_rate": 9.966740896307791e-06,
|
212 |
+
"loss": 1.0329,
|
213 |
+
"step": 28
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.12,
|
217 |
+
"grad_norm": 0.4028775109425473,
|
218 |
+
"learning_rate": 9.962947486378325e-06,
|
219 |
+
"loss": 0.7702,
|
220 |
+
"step": 29
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"epoch": 0.12,
|
224 |
+
"grad_norm": 0.39810277536967076,
|
225 |
+
"learning_rate": 9.95895006911623e-06,
|
226 |
+
"loss": 0.771,
|
227 |
+
"step": 30
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 0.12,
|
231 |
+
"grad_norm": 0.29862663396811506,
|
232 |
+
"learning_rate": 9.954748808839675e-06,
|
233 |
+
"loss": 0.7767,
|
234 |
+
"step": 31
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 0.13,
|
238 |
+
"grad_norm": 0.3106188272362696,
|
239 |
+
"learning_rate": 9.950343878246011e-06,
|
240 |
+
"loss": 0.7943,
|
241 |
+
"step": 32
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 0.13,
|
245 |
+
"grad_norm": 0.34702364911134964,
|
246 |
+
"learning_rate": 9.945735458404681e-06,
|
247 |
+
"loss": 0.7972,
|
248 |
+
"step": 33
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.14,
|
252 |
+
"grad_norm": 0.3216448960978253,
|
253 |
+
"learning_rate": 9.94092373874978e-06,
|
254 |
+
"loss": 0.7847,
|
255 |
+
"step": 34
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.14,
|
259 |
+
"grad_norm": 0.31232207978504006,
|
260 |
+
"learning_rate": 9.935908917072253e-06,
|
261 |
+
"loss": 0.7738,
|
262 |
+
"step": 35
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"epoch": 0.14,
|
266 |
+
"grad_norm": 0.3004886604892709,
|
267 |
+
"learning_rate": 9.930691199511775e-06,
|
268 |
+
"loss": 0.7877,
|
269 |
+
"step": 36
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 0.15,
|
273 |
+
"grad_norm": 0.2870013960815822,
|
274 |
+
"learning_rate": 9.925270800548285e-06,
|
275 |
+
"loss": 0.754,
|
276 |
+
"step": 37
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"epoch": 0.15,
|
280 |
+
"grad_norm": 0.28322113595593756,
|
281 |
+
"learning_rate": 9.91964794299315e-06,
|
282 |
+
"loss": 0.7445,
|
283 |
+
"step": 38
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"epoch": 0.16,
|
287 |
+
"grad_norm": 0.3065117198934518,
|
288 |
+
"learning_rate": 9.91382285798002e-06,
|
289 |
+
"loss": 0.787,
|
290 |
+
"step": 39
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.16,
|
294 |
+
"grad_norm": 0.2727693466806482,
|
295 |
+
"learning_rate": 9.907795784955327e-06,
|
296 |
+
"loss": 0.7865,
|
297 |
+
"step": 40
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.16,
|
301 |
+
"grad_norm": 0.2746198009076503,
|
302 |
+
"learning_rate": 9.901566971668437e-06,
|
303 |
+
"loss": 0.7755,
|
304 |
+
"step": 41
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"epoch": 0.17,
|
308 |
+
"grad_norm": 0.2888207750688948,
|
309 |
+
"learning_rate": 9.895136674161466e-06,
|
310 |
+
"loss": 0.7789,
|
311 |
+
"step": 42
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 0.17,
|
315 |
+
"grad_norm": 0.26218141394209254,
|
316 |
+
"learning_rate": 9.888505156758758e-06,
|
317 |
+
"loss": 0.7781,
|
318 |
+
"step": 43
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"epoch": 0.18,
|
322 |
+
"grad_norm": 0.27028128323788914,
|
323 |
+
"learning_rate": 9.881672692056022e-06,
|
324 |
+
"loss": 0.7596,
|
325 |
+
"step": 44
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"epoch": 0.18,
|
329 |
+
"grad_norm": 0.301432889634355,
|
330 |
+
"learning_rate": 9.874639560909118e-06,
|
331 |
+
"loss": 0.7746,
|
332 |
+
"step": 45
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 0.18,
|
336 |
+
"grad_norm": 0.27768870163187315,
|
337 |
+
"learning_rate": 9.867406052422525e-06,
|
338 |
+
"loss": 0.7751,
|
339 |
+
"step": 46
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.19,
|
343 |
+
"grad_norm": 0.2638230079020965,
|
344 |
+
"learning_rate": 9.85997246393744e-06,
|
345 |
+
"loss": 0.8085,
|
346 |
+
"step": 47
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 0.19,
|
350 |
+
"grad_norm": 0.2826098837962784,
|
351 |
+
"learning_rate": 9.852339101019574e-06,
|
352 |
+
"loss": 0.7878,
|
353 |
+
"step": 48
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 0.2,
|
357 |
+
"grad_norm": 0.2673052298412088,
|
358 |
+
"learning_rate": 9.844506277446577e-06,
|
359 |
+
"loss": 0.7747,
|
360 |
+
"step": 49
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"epoch": 0.2,
|
364 |
+
"grad_norm": 0.2589820555015507,
|
365 |
+
"learning_rate": 9.836474315195148e-06,
|
366 |
+
"loss": 0.7491,
|
367 |
+
"step": 50
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"epoch": 0.2,
|
371 |
+
"grad_norm": 0.27744141325372174,
|
372 |
+
"learning_rate": 9.828243544427795e-06,
|
373 |
+
"loss": 0.771,
|
374 |
+
"step": 51
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.21,
|
378 |
+
"grad_norm": 0.25617202776049003,
|
379 |
+
"learning_rate": 9.819814303479268e-06,
|
380 |
+
"loss": 0.789,
|
381 |
+
"step": 52
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.21,
|
385 |
+
"grad_norm": 0.25777796417187593,
|
386 |
+
"learning_rate": 9.811186938842645e-06,
|
387 |
+
"loss": 0.7498,
|
388 |
+
"step": 53
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 0.22,
|
392 |
+
"grad_norm": 0.26356120702424557,
|
393 |
+
"learning_rate": 9.802361805155097e-06,
|
394 |
+
"loss": 0.7618,
|
395 |
+
"step": 54
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 0.22,
|
399 |
+
"grad_norm": 0.24594116238284844,
|
400 |
+
"learning_rate": 9.793339265183303e-06,
|
401 |
+
"loss": 0.7647,
|
402 |
+
"step": 55
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 0.22,
|
406 |
+
"grad_norm": 0.2766331605712476,
|
407 |
+
"learning_rate": 9.784119689808545e-06,
|
408 |
+
"loss": 0.7757,
|
409 |
+
"step": 56
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"epoch": 0.23,
|
413 |
+
"grad_norm": 0.2674205732918615,
|
414 |
+
"learning_rate": 9.774703458011453e-06,
|
415 |
+
"loss": 0.7479,
|
416 |
+
"step": 57
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.23,
|
420 |
+
"grad_norm": 0.25100414008068433,
|
421 |
+
"learning_rate": 9.765090956856437e-06,
|
422 |
+
"loss": 0.7629,
|
423 |
+
"step": 58
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.24,
|
427 |
+
"grad_norm": 0.2558976905977626,
|
428 |
+
"learning_rate": 9.755282581475769e-06,
|
429 |
+
"loss": 0.7368,
|
430 |
+
"step": 59
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"epoch": 0.24,
|
434 |
+
"grad_norm": 0.2816597522453804,
|
435 |
+
"learning_rate": 9.745278735053345e-06,
|
436 |
+
"loss": 0.7675,
|
437 |
+
"step": 60
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 0.24,
|
441 |
+
"grad_norm": 0.27864046582364604,
|
442 |
+
"learning_rate": 9.735079828808107e-06,
|
443 |
+
"loss": 0.7693,
|
444 |
+
"step": 61
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 0.25,
|
448 |
+
"grad_norm": 0.2537495381298166,
|
449 |
+
"learning_rate": 9.724686281977146e-06,
|
450 |
+
"loss": 0.7612,
|
451 |
+
"step": 62
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 0.25,
|
455 |
+
"grad_norm": 0.27161360619636454,
|
456 |
+
"learning_rate": 9.714098521798466e-06,
|
457 |
+
"loss": 0.7659,
|
458 |
+
"step": 63
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.26,
|
462 |
+
"grad_norm": 0.257282261183055,
|
463 |
+
"learning_rate": 9.703316983493414e-06,
|
464 |
+
"loss": 0.77,
|
465 |
+
"step": 64
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.26,
|
469 |
+
"grad_norm": 0.2598148868150837,
|
470 |
+
"learning_rate": 9.692342110248802e-06,
|
471 |
+
"loss": 0.7637,
|
472 |
+
"step": 65
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"epoch": 0.26,
|
476 |
+
"grad_norm": 0.25319486577746536,
|
477 |
+
"learning_rate": 9.681174353198687e-06,
|
478 |
+
"loss": 0.7529,
|
479 |
+
"step": 66
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 0.27,
|
483 |
+
"grad_norm": 0.2616187230129625,
|
484 |
+
"learning_rate": 9.669814171405818e-06,
|
485 |
+
"loss": 0.7482,
|
486 |
+
"step": 67
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"epoch": 0.27,
|
490 |
+
"grad_norm": 0.2531735015293101,
|
491 |
+
"learning_rate": 9.658262031842772e-06,
|
492 |
+
"loss": 0.7507,
|
493 |
+
"step": 68
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"epoch": 0.28,
|
497 |
+
"grad_norm": 0.2540031125746497,
|
498 |
+
"learning_rate": 9.64651840937276e-06,
|
499 |
+
"loss": 0.7573,
|
500 |
+
"step": 69
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 0.28,
|
504 |
+
"grad_norm": 0.26251145119756225,
|
505 |
+
"learning_rate": 9.63458378673011e-06,
|
506 |
+
"loss": 0.7617,
|
507 |
+
"step": 70
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.28,
|
511 |
+
"grad_norm": 11.659656865913,
|
512 |
+
"learning_rate": 9.622458654500408e-06,
|
513 |
+
"loss": 0.9807,
|
514 |
+
"step": 71
|
515 |
+
},
|
516 |
+
{
|
517 |
+
"epoch": 0.29,
|
518 |
+
"grad_norm": 43.33218979251603,
|
519 |
+
"learning_rate": 9.610143511100354e-06,
|
520 |
+
"loss": 1.0213,
|
521 |
+
"step": 72
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 0.29,
|
525 |
+
"grad_norm": 0.29661440448786996,
|
526 |
+
"learning_rate": 9.597638862757255e-06,
|
527 |
+
"loss": 0.7597,
|
528 |
+
"step": 73
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"epoch": 0.3,
|
532 |
+
"grad_norm": 0.2674359864711363,
|
533 |
+
"learning_rate": 9.584945223488227e-06,
|
534 |
+
"loss": 0.7716,
|
535 |
+
"step": 74
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"epoch": 0.3,
|
539 |
+
"grad_norm": 0.2587397735578842,
|
540 |
+
"learning_rate": 9.572063115079063e-06,
|
541 |
+
"loss": 0.7654,
|
542 |
+
"step": 75
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 0.3,
|
546 |
+
"grad_norm": 0.27326638279450294,
|
547 |
+
"learning_rate": 9.558993067062785e-06,
|
548 |
+
"loss": 0.7832,
|
549 |
+
"step": 76
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.31,
|
553 |
+
"grad_norm": 0.26424783232216553,
|
554 |
+
"learning_rate": 9.545735616697875e-06,
|
555 |
+
"loss": 0.7509,
|
556 |
+
"step": 77
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 0.31,
|
560 |
+
"grad_norm": 0.26894661215694415,
|
561 |
+
"learning_rate": 9.532291308946191e-06,
|
562 |
+
"loss": 0.7638,
|
563 |
+
"step": 78
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"epoch": 0.32,
|
567 |
+
"grad_norm": 12.381149099110814,
|
568 |
+
"learning_rate": 9.518660696450567e-06,
|
569 |
+
"loss": 0.9726,
|
570 |
+
"step": 79
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"epoch": 0.32,
|
574 |
+
"grad_norm": 63.276974873593076,
|
575 |
+
"learning_rate": 9.504844339512096e-06,
|
576 |
+
"loss": 0.961,
|
577 |
+
"step": 80
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"epoch": 0.32,
|
581 |
+
"grad_norm": 0.34404347007223207,
|
582 |
+
"learning_rate": 9.490842806067095e-06,
|
583 |
+
"loss": 0.7366,
|
584 |
+
"step": 81
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 0.33,
|
588 |
+
"grad_norm": 0.2761892805994169,
|
589 |
+
"learning_rate": 9.476656671663766e-06,
|
590 |
+
"loss": 0.7565,
|
591 |
+
"step": 82
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 0.33,
|
595 |
+
"grad_norm": 0.2938700568825168,
|
596 |
+
"learning_rate": 9.462286519438531e-06,
|
597 |
+
"loss": 0.7586,
|
598 |
+
"step": 83
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"epoch": 0.33,
|
602 |
+
"grad_norm": 0.30998708104141814,
|
603 |
+
"learning_rate": 9.44773294009206e-06,
|
604 |
+
"loss": 0.747,
|
605 |
+
"step": 84
|
606 |
+
},
|
607 |
+
{
|
608 |
+
"epoch": 0.34,
|
609 |
+
"grad_norm": 0.2789622879446074,
|
610 |
+
"learning_rate": 9.432996531865001e-06,
|
611 |
+
"loss": 0.7381,
|
612 |
+
"step": 85
|
613 |
+
},
|
614 |
+
{
|
615 |
+
"epoch": 0.34,
|
616 |
+
"grad_norm": 0.3043211841621936,
|
617 |
+
"learning_rate": 9.418077900513377e-06,
|
618 |
+
"loss": 0.7648,
|
619 |
+
"step": 86
|
620 |
+
},
|
621 |
+
{
|
622 |
+
"epoch": 0.35,
|
623 |
+
"grad_norm": 0.27269347275749684,
|
624 |
+
"learning_rate": 9.40297765928369e-06,
|
625 |
+
"loss": 0.7287,
|
626 |
+
"step": 87
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 0.35,
|
630 |
+
"grad_norm": 0.29165683068711035,
|
631 |
+
"learning_rate": 9.387696428887715e-06,
|
632 |
+
"loss": 0.7714,
|
633 |
+
"step": 88
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 0.35,
|
637 |
+
"grad_norm": 0.29093659611546846,
|
638 |
+
"learning_rate": 9.372234837476979e-06,
|
639 |
+
"loss": 0.754,
|
640 |
+
"step": 89
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"epoch": 0.36,
|
644 |
+
"grad_norm": 0.2622000520062877,
|
645 |
+
"learning_rate": 9.356593520616948e-06,
|
646 |
+
"loss": 0.7604,
|
647 |
+
"step": 90
|
648 |
+
},
|
649 |
+
{
|
650 |
+
"epoch": 0.36,
|
651 |
+
"grad_norm": 0.29648676556314774,
|
652 |
+
"learning_rate": 9.340773121260893e-06,
|
653 |
+
"loss": 0.7677,
|
654 |
+
"step": 91
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 0.37,
|
658 |
+
"grad_norm": 0.2971691719126809,
|
659 |
+
"learning_rate": 9.324774289723469e-06,
|
660 |
+
"loss": 0.7826,
|
661 |
+
"step": 92
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 0.37,
|
665 |
+
"grad_norm": 0.2695147958164756,
|
666 |
+
"learning_rate": 9.308597683653976e-06,
|
667 |
+
"loss": 0.7675,
|
668 |
+
"step": 93
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 0.37,
|
672 |
+
"grad_norm": 0.2947547264550856,
|
673 |
+
"learning_rate": 9.292243968009332e-06,
|
674 |
+
"loss": 0.7611,
|
675 |
+
"step": 94
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 0.38,
|
679 |
+
"grad_norm": 0.2698951119585888,
|
680 |
+
"learning_rate": 9.275713815026732e-06,
|
681 |
+
"loss": 0.7437,
|
682 |
+
"step": 95
|
683 |
+
},
|
684 |
+
{
|
685 |
+
"epoch": 0.38,
|
686 |
+
"grad_norm": 0.2922871464880811,
|
687 |
+
"learning_rate": 9.259007904196023e-06,
|
688 |
+
"loss": 0.7716,
|
689 |
+
"step": 96
|
690 |
+
},
|
691 |
+
{
|
692 |
+
"epoch": 0.39,
|
693 |
+
"grad_norm": 13.342043215041077,
|
694 |
+
"learning_rate": 9.242126922231763e-06,
|
695 |
+
"loss": 1.0262,
|
696 |
+
"step": 97
|
697 |
+
},
|
698 |
+
{
|
699 |
+
"epoch": 0.39,
|
700 |
+
"grad_norm": 3.3348436860369577,
|
701 |
+
"learning_rate": 9.225071563045007e-06,
|
702 |
+
"loss": 0.9733,
|
703 |
+
"step": 98
|
704 |
+
},
|
705 |
+
{
|
706 |
+
"epoch": 0.39,
|
707 |
+
"grad_norm": 0.30515152013617763,
|
708 |
+
"learning_rate": 9.207842527714767e-06,
|
709 |
+
"loss": 0.7491,
|
710 |
+
"step": 99
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 0.4,
|
714 |
+
"grad_norm": 0.2797372956926758,
|
715 |
+
"learning_rate": 9.190440524459203e-06,
|
716 |
+
"loss": 0.7658,
|
717 |
+
"step": 100
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 0.4,
|
721 |
+
"grad_norm": 0.295442681103485,
|
722 |
+
"learning_rate": 9.172866268606514e-06,
|
723 |
+
"loss": 0.7359,
|
724 |
+
"step": 101
|
725 |
+
},
|
726 |
+
{
|
727 |
+
"epoch": 0.41,
|
728 |
+
"grad_norm": 0.2890934213055238,
|
729 |
+
"learning_rate": 9.15512048256552e-06,
|
730 |
+
"loss": 0.7783,
|
731 |
+
"step": 102
|
732 |
+
},
|
733 |
+
{
|
734 |
+
"epoch": 0.41,
|
735 |
+
"grad_norm": 0.2698602196909741,
|
736 |
+
"learning_rate": 9.137203895795983e-06,
|
737 |
+
"loss": 0.7476,
|
738 |
+
"step": 103
|
739 |
+
},
|
740 |
+
{
|
741 |
+
"epoch": 0.41,
|
742 |
+
"grad_norm": 0.30586672847809404,
|
743 |
+
"learning_rate": 9.119117244778609e-06,
|
744 |
+
"loss": 0.7494,
|
745 |
+
"step": 104
|
746 |
+
},
|
747 |
+
{
|
748 |
+
"epoch": 0.42,
|
749 |
+
"grad_norm": 0.28256137853789653,
|
750 |
+
"learning_rate": 9.10086127298478e-06,
|
751 |
+
"loss": 0.7347,
|
752 |
+
"step": 105
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 0.42,
|
756 |
+
"grad_norm": 0.2654565204147507,
|
757 |
+
"learning_rate": 9.082436730845993e-06,
|
758 |
+
"loss": 0.7282,
|
759 |
+
"step": 106
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 0.43,
|
763 |
+
"grad_norm": 0.3110313172517606,
|
764 |
+
"learning_rate": 9.063844375723014e-06,
|
765 |
+
"loss": 0.7442,
|
766 |
+
"step": 107
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 0.43,
|
770 |
+
"grad_norm": 0.30406144580285027,
|
771 |
+
"learning_rate": 9.045084971874738e-06,
|
772 |
+
"loss": 0.7365,
|
773 |
+
"step": 108
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"epoch": 0.43,
|
777 |
+
"grad_norm": 0.2578097986689305,
|
778 |
+
"learning_rate": 9.026159290426782e-06,
|
779 |
+
"loss": 0.7644,
|
780 |
+
"step": 109
|
781 |
+
},
|
782 |
+
{
|
783 |
+
"epoch": 0.44,
|
784 |
+
"grad_norm": 0.2875228334986064,
|
785 |
+
"learning_rate": 9.007068109339783e-06,
|
786 |
+
"loss": 0.7359,
|
787 |
+
"step": 110
|
788 |
+
},
|
789 |
+
{
|
790 |
+
"epoch": 0.44,
|
791 |
+
"grad_norm": 0.3007292657335934,
|
792 |
+
"learning_rate": 8.987812213377423e-06,
|
793 |
+
"loss": 0.7571,
|
794 |
+
"step": 111
|
795 |
+
},
|
796 |
+
{
|
797 |
+
"epoch": 0.45,
|
798 |
+
"grad_norm": 0.2705781647990633,
|
799 |
+
"learning_rate": 8.968392394074164e-06,
|
800 |
+
"loss": 0.7321,
|
801 |
+
"step": 112
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"epoch": 0.45,
|
805 |
+
"grad_norm": 7.709717121399015,
|
806 |
+
"learning_rate": 8.948809449702712e-06,
|
807 |
+
"loss": 1.0663,
|
808 |
+
"step": 113
|
809 |
+
},
|
810 |
+
{
|
811 |
+
"epoch": 0.45,
|
812 |
+
"grad_norm": 0.3159530858994423,
|
813 |
+
"learning_rate": 8.929064185241214e-06,
|
814 |
+
"loss": 0.7594,
|
815 |
+
"step": 114
|
816 |
+
},
|
817 |
+
{
|
818 |
+
"epoch": 0.46,
|
819 |
+
"grad_norm": 0.3001925080979955,
|
820 |
+
"learning_rate": 8.90915741234015e-06,
|
821 |
+
"loss": 0.7486,
|
822 |
+
"step": 115
|
823 |
+
},
|
824 |
+
{
|
825 |
+
"epoch": 0.46,
|
826 |
+
"grad_norm": 2.7719217922453914,
|
827 |
+
"learning_rate": 8.889089949288986e-06,
|
828 |
+
"loss": 1.0014,
|
829 |
+
"step": 116
|
830 |
+
},
|
831 |
+
{
|
832 |
+
"epoch": 0.47,
|
833 |
+
"grad_norm": 0.2980097580186808,
|
834 |
+
"learning_rate": 8.868862620982534e-06,
|
835 |
+
"loss": 0.7302,
|
836 |
+
"step": 117
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"epoch": 0.47,
|
840 |
+
"grad_norm": 0.2674175783919389,
|
841 |
+
"learning_rate": 8.84847625888703e-06,
|
842 |
+
"loss": 0.7515,
|
843 |
+
"step": 118
|
844 |
+
},
|
845 |
+
{
|
846 |
+
"epoch": 0.47,
|
847 |
+
"grad_norm": 0.33089914745986465,
|
848 |
+
"learning_rate": 8.827931701005974e-06,
|
849 |
+
"loss": 0.7452,
|
850 |
+
"step": 119
|
851 |
+
},
|
852 |
+
{
|
853 |
+
"epoch": 0.48,
|
854 |
+
"grad_norm": 0.2657873873108844,
|
855 |
+
"learning_rate": 8.807229791845673e-06,
|
856 |
+
"loss": 0.7565,
|
857 |
+
"step": 120
|
858 |
+
},
|
859 |
+
{
|
860 |
+
"epoch": 0.48,
|
861 |
+
"grad_norm": 0.26891569095038903,
|
862 |
+
"learning_rate": 8.786371382380527e-06,
|
863 |
+
"loss": 0.7525,
|
864 |
+
"step": 121
|
865 |
+
},
|
866 |
+
{
|
867 |
+
"epoch": 0.49,
|
868 |
+
"grad_norm": 0.30828049821760906,
|
869 |
+
"learning_rate": 8.765357330018056e-06,
|
870 |
+
"loss": 0.7395,
|
871 |
+
"step": 122
|
872 |
+
},
|
873 |
+
{
|
874 |
+
"epoch": 0.49,
|
875 |
+
"grad_norm": 0.2703956947723179,
|
876 |
+
"learning_rate": 8.74418849856364e-06,
|
877 |
+
"loss": 0.7762,
|
878 |
+
"step": 123
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"epoch": 0.49,
|
882 |
+
"grad_norm": 0.27665743831770573,
|
883 |
+
"learning_rate": 8.722865758185036e-06,
|
884 |
+
"loss": 0.7499,
|
885 |
+
"step": 124
|
886 |
+
},
|
887 |
+
{
|
888 |
+
"epoch": 0.5,
|
889 |
+
"grad_norm": 0.31328445024397394,
|
890 |
+
"learning_rate": 8.701389985376578e-06,
|
891 |
+
"loss": 0.7368,
|
892 |
+
"step": 125
|
893 |
+
},
|
894 |
+
{
|
895 |
+
"epoch": 0.5,
|
896 |
+
"eval_loss": 0.7192811369895935,
|
897 |
+
"eval_runtime": 97.0775,
|
898 |
+
"eval_samples_per_second": 18.212,
|
899 |
+
"eval_steps_per_second": 0.381,
|
900 |
+
"step": 125
|
901 |
+
},
|
902 |
+
{
|
903 |
+
"epoch": 0.5,
|
904 |
+
"grad_norm": 0.26565830658390915,
|
905 |
+
"learning_rate": 8.679762062923176e-06,
|
906 |
+
"loss": 0.7727,
|
907 |
+
"step": 126
|
908 |
+
},
|
909 |
+
{
|
910 |
+
"epoch": 0.51,
|
911 |
+
"grad_norm": 0.2768705145101062,
|
912 |
+
"learning_rate": 8.657982879864007e-06,
|
913 |
+
"loss": 0.7178,
|
914 |
+
"step": 127
|
915 |
+
},
|
916 |
+
{
|
917 |
+
"epoch": 0.51,
|
918 |
+
"grad_norm": 0.27658899618203814,
|
919 |
+
"learning_rate": 8.636053331455986e-06,
|
920 |
+
"loss": 0.7521,
|
921 |
+
"step": 128
|
922 |
+
},
|
923 |
+
{
|
924 |
+
"epoch": 0.51,
|
925 |
+
"grad_norm": 0.2687326456666238,
|
926 |
+
"learning_rate": 8.613974319136959e-06,
|
927 |
+
"loss": 0.7411,
|
928 |
+
"step": 129
|
929 |
+
},
|
930 |
+
{
|
931 |
+
"epoch": 0.52,
|
932 |
+
"grad_norm": 0.2618083386724651,
|
933 |
+
"learning_rate": 8.591746750488639e-06,
|
934 |
+
"loss": 0.7306,
|
935 |
+
"step": 130
|
936 |
+
},
|
937 |
+
{
|
938 |
+
"epoch": 0.52,
|
939 |
+
"grad_norm": 0.25666246646393165,
|
940 |
+
"learning_rate": 8.569371539199316e-06,
|
941 |
+
"loss": 0.7505,
|
942 |
+
"step": 131
|
943 |
+
},
|
944 |
+
{
|
945 |
+
"epoch": 0.53,
|
946 |
+
"grad_norm": 0.3203048983481449,
|
947 |
+
"learning_rate": 8.54684960502629e-06,
|
948 |
+
"loss": 0.7515,
|
949 |
+
"step": 132
|
950 |
+
},
|
951 |
+
{
|
952 |
+
"epoch": 0.53,
|
953 |
+
"grad_norm": 0.2521993776332652,
|
954 |
+
"learning_rate": 8.52418187375806e-06,
|
955 |
+
"loss": 0.7505,
|
956 |
+
"step": 133
|
957 |
+
},
|
958 |
+
{
|
959 |
+
"epoch": 0.53,
|
960 |
+
"grad_norm": 0.26591933789428035,
|
961 |
+
"learning_rate": 8.501369277176275e-06,
|
962 |
+
"loss": 0.7353,
|
963 |
+
"step": 134
|
964 |
+
},
|
965 |
+
{
|
966 |
+
"epoch": 0.54,
|
967 |
+
"grad_norm": 0.27603393300812845,
|
968 |
+
"learning_rate": 8.478412753017433e-06,
|
969 |
+
"loss": 0.7609,
|
970 |
+
"step": 135
|
971 |
+
},
|
972 |
+
{
|
973 |
+
"epoch": 0.54,
|
974 |
+
"grad_norm": 0.2668194745887302,
|
975 |
+
"learning_rate": 8.455313244934324e-06,
|
976 |
+
"loss": 0.7141,
|
977 |
+
"step": 136
|
978 |
+
},
|
979 |
+
{
|
980 |
+
"epoch": 0.55,
|
981 |
+
"grad_norm": 0.2707242484249978,
|
982 |
+
"learning_rate": 8.432071702457253e-06,
|
983 |
+
"loss": 0.7223,
|
984 |
+
"step": 137
|
985 |
+
},
|
986 |
+
{
|
987 |
+
"epoch": 0.55,
|
988 |
+
"grad_norm": 0.25511126409448154,
|
989 |
+
"learning_rate": 8.408689080954997e-06,
|
990 |
+
"loss": 0.7153,
|
991 |
+
"step": 138
|
992 |
+
},
|
993 |
+
{
|
994 |
+
"epoch": 0.55,
|
995 |
+
"grad_norm": 15.420395873510664,
|
996 |
+
"learning_rate": 8.38516634159555e-06,
|
997 |
+
"loss": 1.0042,
|
998 |
+
"step": 139
|
999 |
+
},
|
1000 |
+
{
|
1001 |
+
"epoch": 0.56,
|
1002 |
+
"grad_norm": 0.3012234081880187,
|
1003 |
+
"learning_rate": 8.361504451306585e-06,
|
1004 |
+
"loss": 0.7713,
|
1005 |
+
"step": 140
|
1006 |
+
},
|
1007 |
+
{
|
1008 |
+
"epoch": 0.56,
|
1009 |
+
"grad_norm": 0.2598491249346932,
|
1010 |
+
"learning_rate": 8.337704382735741e-06,
|
1011 |
+
"loss": 0.7288,
|
1012 |
+
"step": 141
|
1013 |
+
},
|
1014 |
+
{
|
1015 |
+
"epoch": 0.57,
|
1016 |
+
"grad_norm": 0.26256298238822373,
|
1017 |
+
"learning_rate": 8.313767114210615e-06,
|
1018 |
+
"loss": 0.7379,
|
1019 |
+
"step": 142
|
1020 |
+
},
|
1021 |
+
{
|
1022 |
+
"epoch": 0.57,
|
1023 |
+
"grad_norm": 0.2945113973208366,
|
1024 |
+
"learning_rate": 8.289693629698564e-06,
|
1025 |
+
"loss": 0.7401,
|
1026 |
+
"step": 143
|
1027 |
+
},
|
1028 |
+
{
|
1029 |
+
"epoch": 0.57,
|
1030 |
+
"grad_norm": 0.24981458420819586,
|
1031 |
+
"learning_rate": 8.265484918766243e-06,
|
1032 |
+
"loss": 0.7512,
|
1033 |
+
"step": 144
|
1034 |
+
},
|
1035 |
+
{
|
1036 |
+
"epoch": 0.58,
|
1037 |
+
"grad_norm": 0.2678413297548206,
|
1038 |
+
"learning_rate": 8.241141976538944e-06,
|
1039 |
+
"loss": 0.7449,
|
1040 |
+
"step": 145
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 0.58,
|
1044 |
+
"grad_norm": 0.2623417103083203,
|
1045 |
+
"learning_rate": 8.216665803659671e-06,
|
1046 |
+
"loss": 0.7647,
|
1047 |
+
"step": 146
|
1048 |
+
},
|
1049 |
+
{
|
1050 |
+
"epoch": 0.59,
|
1051 |
+
"grad_norm": 0.263785777979794,
|
1052 |
+
"learning_rate": 8.192057406248028e-06,
|
1053 |
+
"loss": 0.7725,
|
1054 |
+
"step": 147
|
1055 |
+
},
|
1056 |
+
{
|
1057 |
+
"epoch": 0.59,
|
1058 |
+
"grad_norm": 0.2519540317965661,
|
1059 |
+
"learning_rate": 8.16731779585885e-06,
|
1060 |
+
"loss": 0.715,
|
1061 |
+
"step": 148
|
1062 |
+
},
|
1063 |
+
{
|
1064 |
+
"epoch": 0.59,
|
1065 |
+
"grad_norm": 0.27015785362121375,
|
1066 |
+
"learning_rate": 8.142447989440618e-06,
|
1067 |
+
"loss": 0.7532,
|
1068 |
+
"step": 149
|
1069 |
+
},
|
1070 |
+
{
|
1071 |
+
"epoch": 0.6,
|
1072 |
+
"grad_norm": 0.25863328277564784,
|
1073 |
+
"learning_rate": 8.117449009293668e-06,
|
1074 |
+
"loss": 0.7335,
|
1075 |
+
"step": 150
|
1076 |
+
},
|
1077 |
+
{
|
1078 |
+
"epoch": 0.6,
|
1079 |
+
"grad_norm": 0.2550714525590909,
|
1080 |
+
"learning_rate": 8.092321883028157e-06,
|
1081 |
+
"loss": 0.7182,
|
1082 |
+
"step": 151
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"epoch": 0.61,
|
1086 |
+
"grad_norm": 0.2752483825047847,
|
1087 |
+
"learning_rate": 8.067067643521834e-06,
|
1088 |
+
"loss": 0.772,
|
1089 |
+
"step": 152
|
1090 |
+
},
|
1091 |
+
{
|
1092 |
+
"epoch": 0.61,
|
1093 |
+
"grad_norm": 0.2582002365542859,
|
1094 |
+
"learning_rate": 8.041687328877566e-06,
|
1095 |
+
"loss": 0.7284,
|
1096 |
+
"step": 153
|
1097 |
+
},
|
1098 |
+
{
|
1099 |
+
"epoch": 0.61,
|
1100 |
+
"grad_norm": 0.24823845365447103,
|
1101 |
+
"learning_rate": 8.016181982380682e-06,
|
1102 |
+
"loss": 0.7467,
|
1103 |
+
"step": 154
|
1104 |
+
},
|
1105 |
+
{
|
1106 |
+
"epoch": 0.62,
|
1107 |
+
"grad_norm": 0.25644169647568194,
|
1108 |
+
"learning_rate": 7.99055265245608e-06,
|
1109 |
+
"loss": 0.7191,
|
1110 |
+
"step": 155
|
1111 |
+
},
|
1112 |
+
{
|
1113 |
+
"epoch": 0.62,
|
1114 |
+
"grad_norm": 0.27463144458405375,
|
1115 |
+
"learning_rate": 7.96480039262513e-06,
|
1116 |
+
"loss": 0.7375,
|
1117 |
+
"step": 156
|
1118 |
+
},
|
1119 |
+
{
|
1120 |
+
"epoch": 0.63,
|
1121 |
+
"grad_norm": 0.2642553744129046,
|
1122 |
+
"learning_rate": 7.938926261462366e-06,
|
1123 |
+
"loss": 0.7587,
|
1124 |
+
"step": 157
|
1125 |
+
},
|
1126 |
+
{
|
1127 |
+
"epoch": 0.63,
|
1128 |
+
"grad_norm": 0.25679436337027056,
|
1129 |
+
"learning_rate": 7.912931322551981e-06,
|
1130 |
+
"loss": 0.7312,
|
1131 |
+
"step": 158
|
1132 |
+
},
|
1133 |
+
{
|
1134 |
+
"epoch": 0.63,
|
1135 |
+
"grad_norm": 0.2784563408983632,
|
1136 |
+
"learning_rate": 7.886816644444099e-06,
|
1137 |
+
"loss": 0.7213,
|
1138 |
+
"step": 159
|
1139 |
+
},
|
1140 |
+
{
|
1141 |
+
"epoch": 0.64,
|
1142 |
+
"grad_norm": 0.2638439438037005,
|
1143 |
+
"learning_rate": 7.860583300610849e-06,
|
1144 |
+
"loss": 0.7286,
|
1145 |
+
"step": 160
|
1146 |
+
},
|
1147 |
+
{
|
1148 |
+
"epoch": 0.64,
|
1149 |
+
"grad_norm": 0.2599487424469649,
|
1150 |
+
"learning_rate": 7.83423236940225e-06,
|
1151 |
+
"loss": 0.7211,
|
1152 |
+
"step": 161
|
1153 |
+
},
|
1154 |
+
{
|
1155 |
+
"epoch": 0.65,
|
1156 |
+
"grad_norm": 0.2620169279227201,
|
1157 |
+
"learning_rate": 7.807764934001875e-06,
|
1158 |
+
"loss": 0.7243,
|
1159 |
+
"step": 162
|
1160 |
+
},
|
1161 |
+
{
|
1162 |
+
"epoch": 0.65,
|
1163 |
+
"grad_norm": 0.3455142385888707,
|
1164 |
+
"learning_rate": 7.781182082382325e-06,
|
1165 |
+
"loss": 0.7709,
|
1166 |
+
"step": 163
|
1167 |
+
},
|
1168 |
+
{
|
1169 |
+
"epoch": 0.65,
|
1170 |
+
"grad_norm": 0.25797958121628417,
|
1171 |
+
"learning_rate": 7.754484907260513e-06,
|
1172 |
+
"loss": 0.7371,
|
1173 |
+
"step": 164
|
1174 |
+
},
|
1175 |
+
{
|
1176 |
+
"epoch": 0.66,
|
1177 |
+
"grad_norm": 0.26245124486082283,
|
1178 |
+
"learning_rate": 7.727674506052744e-06,
|
1179 |
+
"loss": 0.7625,
|
1180 |
+
"step": 165
|
1181 |
+
},
|
1182 |
+
{
|
1183 |
+
"epoch": 0.66,
|
1184 |
+
"grad_norm": 0.259525851556208,
|
1185 |
+
"learning_rate": 7.700751980829601e-06,
|
1186 |
+
"loss": 0.7785,
|
1187 |
+
"step": 166
|
1188 |
+
},
|
1189 |
+
{
|
1190 |
+
"epoch": 0.67,
|
1191 |
+
"grad_norm": 0.25578616887441574,
|
1192 |
+
"learning_rate": 7.673718438270649e-06,
|
1193 |
+
"loss": 0.7349,
|
1194 |
+
"step": 167
|
1195 |
+
},
|
1196 |
+
{
|
1197 |
+
"epoch": 0.67,
|
1198 |
+
"grad_norm": 0.26880908011952676,
|
1199 |
+
"learning_rate": 7.646574989618938e-06,
|
1200 |
+
"loss": 0.7423,
|
1201 |
+
"step": 168
|
1202 |
+
},
|
1203 |
+
{
|
1204 |
+
"epoch": 0.67,
|
1205 |
+
"grad_norm": 0.28268284846763475,
|
1206 |
+
"learning_rate": 7.619322750635327e-06,
|
1207 |
+
"loss": 0.8089,
|
1208 |
+
"step": 169
|
1209 |
+
},
|
1210 |
+
{
|
1211 |
+
"epoch": 0.68,
|
1212 |
+
"grad_norm": 0.2565025440158926,
|
1213 |
+
"learning_rate": 7.591962841552627e-06,
|
1214 |
+
"loss": 0.708,
|
1215 |
+
"step": 170
|
1216 |
+
},
|
1217 |
+
{
|
1218 |
+
"epoch": 0.68,
|
1219 |
+
"grad_norm": 0.2589330645555015,
|
1220 |
+
"learning_rate": 7.564496387029532e-06,
|
1221 |
+
"loss": 0.7276,
|
1222 |
+
"step": 171
|
1223 |
+
},
|
1224 |
+
{
|
1225 |
+
"epoch": 0.69,
|
1226 |
+
"grad_norm": 4.072287518324262,
|
1227 |
+
"learning_rate": 7.536924516104411e-06,
|
1228 |
+
"loss": 0.963,
|
1229 |
+
"step": 172
|
1230 |
+
},
|
1231 |
+
{
|
1232 |
+
"epoch": 0.69,
|
1233 |
+
"grad_norm": 5.236195816930884,
|
1234 |
+
"learning_rate": 7.509248362148889e-06,
|
1235 |
+
"loss": 0.9786,
|
1236 |
+
"step": 173
|
1237 |
+
},
|
1238 |
+
{
|
1239 |
+
"epoch": 0.69,
|
1240 |
+
"grad_norm": 0.3208811366448085,
|
1241 |
+
"learning_rate": 7.481469062821252e-06,
|
1242 |
+
"loss": 0.7417,
|
1243 |
+
"step": 174
|
1244 |
+
},
|
1245 |
+
{
|
1246 |
+
"epoch": 0.7,
|
1247 |
+
"grad_norm": 0.280850125752099,
|
1248 |
+
"learning_rate": 7.453587760019691e-06,
|
1249 |
+
"loss": 0.7249,
|
1250 |
+
"step": 175
|
1251 |
+
},
|
1252 |
+
{
|
1253 |
+
"epoch": 0.7,
|
1254 |
+
"grad_norm": 0.26692675004354643,
|
1255 |
+
"learning_rate": 7.42560559983536e-06,
|
1256 |
+
"loss": 0.727,
|
1257 |
+
"step": 176
|
1258 |
+
},
|
1259 |
+
{
|
1260 |
+
"epoch": 0.71,
|
1261 |
+
"grad_norm": 0.27369623001787907,
|
1262 |
+
"learning_rate": 7.39752373250527e-06,
|
1263 |
+
"loss": 0.7617,
|
1264 |
+
"step": 177
|
1265 |
+
},
|
1266 |
+
{
|
1267 |
+
"epoch": 0.71,
|
1268 |
+
"grad_norm": 0.2784142807735342,
|
1269 |
+
"learning_rate": 7.369343312364994e-06,
|
1270 |
+
"loss": 0.7466,
|
1271 |
+
"step": 178
|
1272 |
+
},
|
1273 |
+
{
|
1274 |
+
"epoch": 0.71,
|
1275 |
+
"grad_norm": 37.27250895412763,
|
1276 |
+
"learning_rate": 7.34106549780123e-06,
|
1277 |
+
"loss": 1.0667,
|
1278 |
+
"step": 179
|
1279 |
+
},
|
1280 |
+
{
|
1281 |
+
"epoch": 0.72,
|
1282 |
+
"grad_norm": 0.2760061039631398,
|
1283 |
+
"learning_rate": 7.312691451204178e-06,
|
1284 |
+
"loss": 0.7244,
|
1285 |
+
"step": 180
|
1286 |
+
},
|
1287 |
+
{
|
1288 |
+
"epoch": 0.72,
|
1289 |
+
"grad_norm": 0.25459829854169064,
|
1290 |
+
"learning_rate": 7.284222338919758e-06,
|
1291 |
+
"loss": 0.7364,
|
1292 |
+
"step": 181
|
1293 |
+
},
|
1294 |
+
{
|
1295 |
+
"epoch": 0.73,
|
1296 |
+
"grad_norm": 0.26179305555253735,
|
1297 |
+
"learning_rate": 7.255659331201673e-06,
|
1298 |
+
"loss": 0.733,
|
1299 |
+
"step": 182
|
1300 |
+
},
|
1301 |
+
{
|
1302 |
+
"epoch": 0.73,
|
1303 |
+
"grad_norm": 0.2604418741829541,
|
1304 |
+
"learning_rate": 7.227003602163296e-06,
|
1305 |
+
"loss": 0.7209,
|
1306 |
+
"step": 183
|
1307 |
+
},
|
1308 |
+
{
|
1309 |
+
"epoch": 0.73,
|
1310 |
+
"grad_norm": 0.26185681215109163,
|
1311 |
+
"learning_rate": 7.198256329729412e-06,
|
1312 |
+
"loss": 0.7164,
|
1313 |
+
"step": 184
|
1314 |
+
},
|
1315 |
+
{
|
1316 |
+
"epoch": 0.74,
|
1317 |
+
"grad_norm": 16.152387103951856,
|
1318 |
+
"learning_rate": 7.169418695587791e-06,
|
1319 |
+
"loss": 1.0372,
|
1320 |
+
"step": 185
|
1321 |
+
},
|
1322 |
+
{
|
1323 |
+
"epoch": 0.74,
|
1324 |
+
"grad_norm": 21.228735850953576,
|
1325 |
+
"learning_rate": 7.140491885140629e-06,
|
1326 |
+
"loss": 1.0402,
|
1327 |
+
"step": 186
|
1328 |
+
},
|
1329 |
+
{
|
1330 |
+
"epoch": 0.75,
|
1331 |
+
"grad_norm": 0.28404810159037286,
|
1332 |
+
"learning_rate": 7.1114770874558e-06,
|
1333 |
+
"loss": 0.7006,
|
1334 |
+
"step": 187
|
1335 |
+
},
|
1336 |
+
{
|
1337 |
+
"epoch": 0.75,
|
1338 |
+
"grad_norm": 0.26609034714435736,
|
1339 |
+
"learning_rate": 7.082375495217996e-06,
|
1340 |
+
"loss": 0.7537,
|
1341 |
+
"step": 188
|
1342 |
+
},
|
1343 |
+
{
|
1344 |
+
"epoch": 0.75,
|
1345 |
+
"grad_norm": 0.25765084929276133,
|
1346 |
+
"learning_rate": 7.053188304679691e-06,
|
1347 |
+
"loss": 0.7302,
|
1348 |
+
"step": 189
|
1349 |
+
},
|
1350 |
+
{
|
1351 |
+
"epoch": 0.76,
|
1352 |
+
"grad_norm": 0.26384158886834463,
|
1353 |
+
"learning_rate": 7.023916715611969e-06,
|
1354 |
+
"loss": 0.712,
|
1355 |
+
"step": 190
|
1356 |
+
},
|
1357 |
+
{
|
1358 |
+
"epoch": 0.76,
|
1359 |
+
"grad_norm": 0.27151931787506317,
|
1360 |
+
"learning_rate": 6.994561931255209e-06,
|
1361 |
+
"loss": 0.7502,
|
1362 |
+
"step": 191
|
1363 |
+
},
|
1364 |
+
{
|
1365 |
+
"epoch": 0.77,
|
1366 |
+
"grad_norm": 0.27031492068457535,
|
1367 |
+
"learning_rate": 6.965125158269619e-06,
|
1368 |
+
"loss": 0.7179,
|
1369 |
+
"step": 192
|
1370 |
+
},
|
1371 |
+
{
|
1372 |
+
"epoch": 0.77,
|
1373 |
+
"grad_norm": 0.26995073084719196,
|
1374 |
+
"learning_rate": 6.935607606685642e-06,
|
1375 |
+
"loss": 0.7624,
|
1376 |
+
"step": 193
|
1377 |
+
},
|
1378 |
+
{
|
1379 |
+
"epoch": 0.77,
|
1380 |
+
"grad_norm": 0.25666755324587454,
|
1381 |
+
"learning_rate": 6.906010489854209e-06,
|
1382 |
+
"loss": 0.7426,
|
1383 |
+
"step": 194
|
1384 |
+
},
|
1385 |
+
{
|
1386 |
+
"epoch": 0.78,
|
1387 |
+
"grad_norm": 0.2764461509009301,
|
1388 |
+
"learning_rate": 6.876335024396872e-06,
|
1389 |
+
"loss": 0.723,
|
1390 |
+
"step": 195
|
1391 |
+
},
|
1392 |
+
{
|
1393 |
+
"epoch": 0.78,
|
1394 |
+
"grad_norm": 0.2597906002555833,
|
1395 |
+
"learning_rate": 6.846582430155783e-06,
|
1396 |
+
"loss": 0.7407,
|
1397 |
+
"step": 196
|
1398 |
+
},
|
1399 |
+
{
|
1400 |
+
"epoch": 0.79,
|
1401 |
+
"grad_norm": 0.26409742487438864,
|
1402 |
+
"learning_rate": 6.816753930143558e-06,
|
1403 |
+
"loss": 0.7206,
|
1404 |
+
"step": 197
|
1405 |
+
},
|
1406 |
+
{
|
1407 |
+
"epoch": 0.79,
|
1408 |
+
"grad_norm": 0.25320169233675405,
|
1409 |
+
"learning_rate": 6.786850750493006e-06,
|
1410 |
+
"loss": 0.7437,
|
1411 |
+
"step": 198
|
1412 |
+
},
|
1413 |
+
{
|
1414 |
+
"epoch": 0.79,
|
1415 |
+
"grad_norm": 0.2708696048462205,
|
1416 |
+
"learning_rate": 6.7568741204067145e-06,
|
1417 |
+
"loss": 0.7422,
|
1418 |
+
"step": 199
|
1419 |
+
},
|
1420 |
+
{
|
1421 |
+
"epoch": 0.8,
|
1422 |
+
"grad_norm": 0.26542323915181154,
|
1423 |
+
"learning_rate": 6.726825272106539e-06,
|
1424 |
+
"loss": 0.7514,
|
1425 |
+
"step": 200
|
1426 |
+
},
|
1427 |
+
{
|
1428 |
+
"epoch": 0.8,
|
1429 |
+
"grad_norm": 0.26307166597433396,
|
1430 |
+
"learning_rate": 6.696705440782939e-06,
|
1431 |
+
"loss": 0.7509,
|
1432 |
+
"step": 201
|
1433 |
+
},
|
1434 |
+
{
|
1435 |
+
"epoch": 0.81,
|
1436 |
+
"grad_norm": 0.26671446872754456,
|
1437 |
+
"learning_rate": 6.66651586454421e-06,
|
1438 |
+
"loss": 0.7465,
|
1439 |
+
"step": 202
|
1440 |
+
},
|
1441 |
+
{
|
1442 |
+
"epoch": 0.81,
|
1443 |
+
"grad_norm": 0.2720083369272757,
|
1444 |
+
"learning_rate": 6.636257784365585e-06,
|
1445 |
+
"loss": 0.7349,
|
1446 |
+
"step": 203
|
1447 |
+
},
|
1448 |
+
{
|
1449 |
+
"epoch": 0.81,
|
1450 |
+
"grad_norm": 0.2652218770116059,
|
1451 |
+
"learning_rate": 6.605932444038229e-06,
|
1452 |
+
"loss": 0.7348,
|
1453 |
+
"step": 204
|
1454 |
+
},
|
1455 |
+
{
|
1456 |
+
"epoch": 0.82,
|
1457 |
+
"grad_norm": 0.26402314109149694,
|
1458 |
+
"learning_rate": 6.575541090118105e-06,
|
1459 |
+
"loss": 0.7495,
|
1460 |
+
"step": 205
|
1461 |
+
},
|
1462 |
+
{
|
1463 |
+
"epoch": 0.82,
|
1464 |
+
"grad_norm": 0.2639803511821082,
|
1465 |
+
"learning_rate": 6.545084971874738e-06,
|
1466 |
+
"loss": 0.7138,
|
1467 |
+
"step": 206
|
1468 |
+
},
|
1469 |
+
{
|
1470 |
+
"epoch": 0.83,
|
1471 |
+
"grad_norm": 0.2673567043268493,
|
1472 |
+
"learning_rate": 6.514565341239861e-06,
|
1473 |
+
"loss": 0.7341,
|
1474 |
+
"step": 207
|
1475 |
+
},
|
1476 |
+
{
|
1477 |
+
"epoch": 0.83,
|
1478 |
+
"grad_norm": 74.0236556664021,
|
1479 |
+
"learning_rate": 6.483983452755953e-06,
|
1480 |
+
"loss": 1.084,
|
1481 |
+
"step": 208
|
1482 |
+
},
|
1483 |
+
{
|
1484 |
+
"epoch": 0.83,
|
1485 |
+
"grad_norm": 0.2694930198888902,
|
1486 |
+
"learning_rate": 6.4533405635246696e-06,
|
1487 |
+
"loss": 0.7422,
|
1488 |
+
"step": 209
|
1489 |
+
},
|
1490 |
+
{
|
1491 |
+
"epoch": 0.84,
|
1492 |
+
"grad_norm": 0.2808089325365656,
|
1493 |
+
"learning_rate": 6.4226379331551625e-06,
|
1494 |
+
"loss": 0.7543,
|
1495 |
+
"step": 210
|
1496 |
+
},
|
1497 |
+
{
|
1498 |
+
"epoch": 0.84,
|
1499 |
+
"grad_norm": 0.24629087243802783,
|
1500 |
+
"learning_rate": 6.3918768237123175e-06,
|
1501 |
+
"loss": 0.7088,
|
1502 |
+
"step": 211
|
1503 |
+
},
|
1504 |
+
{
|
1505 |
+
"epoch": 0.85,
|
1506 |
+
"grad_norm": 0.2605148206784209,
|
1507 |
+
"learning_rate": 6.361058499664856e-06,
|
1508 |
+
"loss": 0.7434,
|
1509 |
+
"step": 212
|
1510 |
+
},
|
1511 |
+
{
|
1512 |
+
"epoch": 0.85,
|
1513 |
+
"grad_norm": 0.26199687024127344,
|
1514 |
+
"learning_rate": 6.330184227833376e-06,
|
1515 |
+
"loss": 0.7369,
|
1516 |
+
"step": 213
|
1517 |
+
},
|
1518 |
+
{
|
1519 |
+
"epoch": 0.85,
|
1520 |
+
"grad_norm": 0.2693080928270376,
|
1521 |
+
"learning_rate": 6.299255277338265e-06,
|
1522 |
+
"loss": 0.7337,
|
1523 |
+
"step": 214
|
1524 |
+
},
|
1525 |
+
{
|
1526 |
+
"epoch": 0.86,
|
1527 |
+
"grad_norm": 0.2573571779304293,
|
1528 |
+
"learning_rate": 6.268272919547537e-06,
|
1529 |
+
"loss": 0.7366,
|
1530 |
+
"step": 215
|
1531 |
+
},
|
1532 |
+
{
|
1533 |
+
"epoch": 0.86,
|
1534 |
+
"grad_norm": 0.25347655388671,
|
1535 |
+
"learning_rate": 6.237238428024573e-06,
|
1536 |
+
"loss": 0.7392,
|
1537 |
+
"step": 216
|
1538 |
+
},
|
1539 |
+
{
|
1540 |
+
"epoch": 0.87,
|
1541 |
+
"grad_norm": 0.254807709796356,
|
1542 |
+
"learning_rate": 6.2061530784757625e-06,
|
1543 |
+
"loss": 0.7709,
|
1544 |
+
"step": 217
|
1545 |
+
},
|
1546 |
+
{
|
1547 |
+
"epoch": 0.87,
|
1548 |
+
"grad_norm": 0.25435065962054804,
|
1549 |
+
"learning_rate": 6.175018148698077e-06,
|
1550 |
+
"loss": 0.7472,
|
1551 |
+
"step": 218
|
1552 |
+
},
|
1553 |
+
{
|
1554 |
+
"epoch": 0.87,
|
1555 |
+
"grad_norm": 0.25856868944475736,
|
1556 |
+
"learning_rate": 6.143834918526528e-06,
|
1557 |
+
"loss": 0.7442,
|
1558 |
+
"step": 219
|
1559 |
+
},
|
1560 |
+
{
|
1561 |
+
"epoch": 0.88,
|
1562 |
+
"grad_norm": 0.24960062893507637,
|
1563 |
+
"learning_rate": 6.112604669781572e-06,
|
1564 |
+
"loss": 0.7163,
|
1565 |
+
"step": 220
|
1566 |
+
},
|
1567 |
+
{
|
1568 |
+
"epoch": 0.88,
|
1569 |
+
"grad_norm": 0.2544024553733407,
|
1570 |
+
"learning_rate": 6.0813286862164175e-06,
|
1571 |
+
"loss": 0.7236,
|
1572 |
+
"step": 221
|
1573 |
+
},
|
1574 |
+
{
|
1575 |
+
"epoch": 0.89,
|
1576 |
+
"grad_norm": 0.2532920039697931,
|
1577 |
+
"learning_rate": 6.050008253464247e-06,
|
1578 |
+
"loss": 0.7427,
|
1579 |
+
"step": 222
|
1580 |
+
},
|
1581 |
+
{
|
1582 |
+
"epoch": 0.89,
|
1583 |
+
"grad_norm": 0.25372808971698796,
|
1584 |
+
"learning_rate": 6.018644658985378e-06,
|
1585 |
+
"loss": 0.7286,
|
1586 |
+
"step": 223
|
1587 |
+
},
|
1588 |
+
{
|
1589 |
+
"epoch": 0.89,
|
1590 |
+
"grad_norm": 0.2570514856547558,
|
1591 |
+
"learning_rate": 5.987239192014336e-06,
|
1592 |
+
"loss": 0.7349,
|
1593 |
+
"step": 224
|
1594 |
+
},
|
1595 |
+
{
|
1596 |
+
"epoch": 0.9,
|
1597 |
+
"grad_norm": 0.2578576277551542,
|
1598 |
+
"learning_rate": 5.955793143506863e-06,
|
1599 |
+
"loss": 0.7266,
|
1600 |
+
"step": 225
|
1601 |
+
},
|
1602 |
+
{
|
1603 |
+
"epoch": 0.9,
|
1604 |
+
"grad_norm": 0.26312215832145636,
|
1605 |
+
"learning_rate": 5.9243078060868445e-06,
|
1606 |
+
"loss": 0.7389,
|
1607 |
+
"step": 226
|
1608 |
+
},
|
1609 |
+
{
|
1610 |
+
"epoch": 0.91,
|
1611 |
+
"grad_norm": 0.26518617358808877,
|
1612 |
+
"learning_rate": 5.892784473993184e-06,
|
1613 |
+
"loss": 0.7108,
|
1614 |
+
"step": 227
|
1615 |
+
},
|
1616 |
+
{
|
1617 |
+
"epoch": 0.91,
|
1618 |
+
"grad_norm": 0.25620517627113376,
|
1619 |
+
"learning_rate": 5.861224443026595e-06,
|
1620 |
+
"loss": 0.7232,
|
1621 |
+
"step": 228
|
1622 |
+
},
|
1623 |
+
{
|
1624 |
+
"epoch": 0.91,
|
1625 |
+
"grad_norm": 28.36402580586963,
|
1626 |
+
"learning_rate": 5.82962901049634e-06,
|
1627 |
+
"loss": 0.9734,
|
1628 |
+
"step": 229
|
1629 |
+
},
|
1630 |
+
{
|
1631 |
+
"epoch": 0.92,
|
1632 |
+
"grad_norm": 0.2807037939514787,
|
1633 |
+
"learning_rate": 5.797999475166897e-06,
|
1634 |
+
"loss": 0.7341,
|
1635 |
+
"step": 230
|
1636 |
+
},
|
1637 |
+
{
|
1638 |
+
"epoch": 0.92,
|
1639 |
+
"grad_norm": 8.208344028346868,
|
1640 |
+
"learning_rate": 5.766337137204579e-06,
|
1641 |
+
"loss": 0.938,
|
1642 |
+
"step": 231
|
1643 |
+
},
|
1644 |
+
{
|
1645 |
+
"epoch": 0.93,
|
1646 |
+
"grad_norm": 0.26445130385050997,
|
1647 |
+
"learning_rate": 5.734643298124091e-06,
|
1648 |
+
"loss": 0.7316,
|
1649 |
+
"step": 232
|
1650 |
+
},
|
1651 |
+
{
|
1652 |
+
"epoch": 0.93,
|
1653 |
+
"grad_norm": 0.251567451954335,
|
1654 |
+
"learning_rate": 5.702919260735015e-06,
|
1655 |
+
"loss": 0.6966,
|
1656 |
+
"step": 233
|
1657 |
+
},
|
1658 |
+
{
|
1659 |
+
"epoch": 0.93,
|
1660 |
+
"grad_norm": 0.26329080787916564,
|
1661 |
+
"learning_rate": 5.671166329088278e-06,
|
1662 |
+
"loss": 0.7319,
|
1663 |
+
"step": 234
|
1664 |
+
},
|
1665 |
+
{
|
1666 |
+
"epoch": 0.94,
|
1667 |
+
"grad_norm": 0.2566777339661679,
|
1668 |
+
"learning_rate": 5.6393858084225305e-06,
|
1669 |
+
"loss": 0.7529,
|
1670 |
+
"step": 235
|
1671 |
+
},
|
1672 |
+
{
|
1673 |
+
"epoch": 0.94,
|
1674 |
+
"grad_norm": 0.2710815554700812,
|
1675 |
+
"learning_rate": 5.6075790051105025e-06,
|
1676 |
+
"loss": 0.7515,
|
1677 |
+
"step": 236
|
1678 |
+
},
|
1679 |
+
{
|
1680 |
+
"epoch": 0.95,
|
1681 |
+
"grad_norm": 0.27096961550302734,
|
1682 |
+
"learning_rate": 5.575747226605298e-06,
|
1683 |
+
"loss": 0.7073,
|
1684 |
+
"step": 237
|
1685 |
+
},
|
1686 |
+
{
|
1687 |
+
"epoch": 0.95,
|
1688 |
+
"grad_norm": 0.2509131795738037,
|
1689 |
+
"learning_rate": 5.543891781386655e-06,
|
1690 |
+
"loss": 0.7513,
|
1691 |
+
"step": 238
|
1692 |
+
},
|
1693 |
+
{
|
1694 |
+
"epoch": 0.95,
|
1695 |
+
"grad_norm": 0.26210506205941153,
|
1696 |
+
"learning_rate": 5.512013978907157e-06,
|
1697 |
+
"loss": 0.7569,
|
1698 |
+
"step": 239
|
1699 |
+
},
|
1700 |
+
{
|
1701 |
+
"epoch": 0.96,
|
1702 |
+
"grad_norm": 0.25123130642497177,
|
1703 |
+
"learning_rate": 5.480115129538409e-06,
|
1704 |
+
"loss": 0.7239,
|
1705 |
+
"step": 240
|
1706 |
+
},
|
1707 |
+
{
|
1708 |
+
"epoch": 0.96,
|
1709 |
+
"grad_norm": 0.2596821607229612,
|
1710 |
+
"learning_rate": 5.448196544517168e-06,
|
1711 |
+
"loss": 0.7256,
|
1712 |
+
"step": 241
|
1713 |
+
},
|
1714 |
+
{
|
1715 |
+
"epoch": 0.97,
|
1716 |
+
"grad_norm": 0.2714818563550966,
|
1717 |
+
"learning_rate": 5.4162595358914475e-06,
|
1718 |
+
"loss": 0.7329,
|
1719 |
+
"step": 242
|
1720 |
+
},
|
1721 |
+
{
|
1722 |
+
"epoch": 0.97,
|
1723 |
+
"grad_norm": 0.260503064108439,
|
1724 |
+
"learning_rate": 5.384305416466584e-06,
|
1725 |
+
"loss": 0.7112,
|
1726 |
+
"step": 243
|
1727 |
+
},
|
1728 |
+
{
|
1729 |
+
"epoch": 0.97,
|
1730 |
+
"grad_norm": 0.2661267608396215,
|
1731 |
+
"learning_rate": 5.35233549975127e-06,
|
1732 |
+
"loss": 0.7534,
|
1733 |
+
"step": 244
|
1734 |
+
},
|
1735 |
+
{
|
1736 |
+
"epoch": 0.98,
|
1737 |
+
"grad_norm": 0.27502743208671454,
|
1738 |
+
"learning_rate": 5.320351099903565e-06,
|
1739 |
+
"loss": 0.7355,
|
1740 |
+
"step": 245
|
1741 |
+
},
|
1742 |
+
{
|
1743 |
+
"epoch": 0.98,
|
1744 |
+
"grad_norm": 0.2598641343680277,
|
1745 |
+
"learning_rate": 5.288353531676873e-06,
|
1746 |
+
"loss": 0.7476,
|
1747 |
+
"step": 246
|
1748 |
+
},
|
1749 |
+
{
|
1750 |
+
"epoch": 0.99,
|
1751 |
+
"grad_norm": 0.2629788348419056,
|
1752 |
+
"learning_rate": 5.256344110365896e-06,
|
1753 |
+
"loss": 0.7523,
|
1754 |
+
"step": 247
|
1755 |
+
},
|
1756 |
+
{
|
1757 |
+
"epoch": 0.99,
|
1758 |
+
"grad_norm": 0.256123432185156,
|
1759 |
+
"learning_rate": 5.224324151752575e-06,
|
1760 |
+
"loss": 0.7479,
|
1761 |
+
"step": 248
|
1762 |
+
},
|
1763 |
+
{
|
1764 |
+
"epoch": 0.99,
|
1765 |
+
"grad_norm": 0.2592695095071067,
|
1766 |
+
"learning_rate": 5.192294972051992e-06,
|
1767 |
+
"loss": 0.7586,
|
1768 |
+
"step": 249
|
1769 |
+
},
|
1770 |
+
{
|
1771 |
+
"epoch": 1.0,
|
1772 |
+
"grad_norm": 0.26264999139615697,
|
1773 |
+
"learning_rate": 5.160257887858278e-06,
|
1774 |
+
"loss": 0.7406,
|
1775 |
+
"step": 250
|
1776 |
+
},
|
1777 |
+
{
|
1778 |
+
"epoch": 1.0,
|
1779 |
+
"eval_loss": 0.7036678791046143,
|
1780 |
+
"eval_runtime": 96.3087,
|
1781 |
+
"eval_samples_per_second": 18.358,
|
1782 |
+
"eval_steps_per_second": 0.384,
|
1783 |
+
"step": 250
|
1784 |
+
},
|
1785 |
+
{
|
1786 |
+
"epoch": 1.0,
|
1787 |
+
"grad_norm": 0.2614921961545108,
|
1788 |
+
"learning_rate": 5.128214216090478e-06,
|
1789 |
+
"loss": 0.7488,
|
1790 |
+
"step": 251
|
1791 |
+
},
|
1792 |
+
{
|
1793 |
+
"epoch": 1.0,
|
1794 |
+
"grad_norm": 0.2605743808221771,
|
1795 |
+
"learning_rate": 5.0961652739384356e-06,
|
1796 |
+
"loss": 0.7338,
|
1797 |
+
"step": 252
|
1798 |
+
},
|
1799 |
+
{
|
1800 |
+
"epoch": 1.01,
|
1801 |
+
"grad_norm": 2.904417203670962,
|
1802 |
+
"learning_rate": 5.064112378808636e-06,
|
1803 |
+
"loss": 0.9738,
|
1804 |
+
"step": 253
|
1805 |
+
},
|
1806 |
+
{
|
1807 |
+
"epoch": 1.01,
|
1808 |
+
"grad_norm": 0.2581985759494367,
|
1809 |
+
"learning_rate": 5.032056848270056e-06,
|
1810 |
+
"loss": 0.7693,
|
1811 |
+
"step": 254
|
1812 |
+
},
|
1813 |
+
{
|
1814 |
+
"epoch": 1.02,
|
1815 |
+
"grad_norm": 0.25102446332314765,
|
1816 |
+
"learning_rate": 5e-06,
|
1817 |
+
"loss": 0.7213,
|
1818 |
+
"step": 255
|
1819 |
+
},
|
1820 |
+
{
|
1821 |
+
"epoch": 1.0,
|
1822 |
+
"grad_norm": 1.4216598983588058,
|
1823 |
+
"learning_rate": 4.967943151729945e-06,
|
1824 |
+
"loss": 0.9193,
|
1825 |
+
"step": 256
|
1826 |
+
},
|
1827 |
+
{
|
1828 |
+
"epoch": 1.0,
|
1829 |
+
"grad_norm": 0.32982276331099014,
|
1830 |
+
"learning_rate": 4.935887621191364e-06,
|
1831 |
+
"loss": 0.6842,
|
1832 |
+
"step": 257
|
1833 |
+
},
|
1834 |
+
{
|
1835 |
+
"epoch": 1.01,
|
1836 |
+
"grad_norm": 0.29043411467478625,
|
1837 |
+
"learning_rate": 4.903834726061565e-06,
|
1838 |
+
"loss": 0.7087,
|
1839 |
+
"step": 258
|
1840 |
+
},
|
1841 |
+
{
|
1842 |
+
"epoch": 1.01,
|
1843 |
+
"grad_norm": 0.25986254756592664,
|
1844 |
+
"learning_rate": 4.871785783909523e-06,
|
1845 |
+
"loss": 0.6741,
|
1846 |
+
"step": 259
|
1847 |
+
},
|
1848 |
+
{
|
1849 |
+
"epoch": 1.02,
|
1850 |
+
"grad_norm": 0.30049816553828484,
|
1851 |
+
"learning_rate": 4.839742112141725e-06,
|
1852 |
+
"loss": 0.7063,
|
1853 |
+
"step": 260
|
1854 |
+
},
|
1855 |
+
{
|
1856 |
+
"epoch": 1.02,
|
1857 |
+
"grad_norm": 0.2895999616622155,
|
1858 |
+
"learning_rate": 4.807705027948008e-06,
|
1859 |
+
"loss": 0.7146,
|
1860 |
+
"step": 261
|
1861 |
+
},
|
1862 |
+
{
|
1863 |
+
"epoch": 1.02,
|
1864 |
+
"grad_norm": 0.30041272052643164,
|
1865 |
+
"learning_rate": 4.775675848247427e-06,
|
1866 |
+
"loss": 0.7134,
|
1867 |
+
"step": 262
|
1868 |
+
},
|
1869 |
+
{
|
1870 |
+
"epoch": 1.03,
|
1871 |
+
"grad_norm": 0.27518299819790887,
|
1872 |
+
"learning_rate": 4.743655889634105e-06,
|
1873 |
+
"loss": 0.692,
|
1874 |
+
"step": 263
|
1875 |
+
},
|
1876 |
+
{
|
1877 |
+
"epoch": 1.03,
|
1878 |
+
"grad_norm": 0.26955160521446175,
|
1879 |
+
"learning_rate": 4.711646468323129e-06,
|
1880 |
+
"loss": 0.658,
|
1881 |
+
"step": 264
|
1882 |
+
},
|
1883 |
+
{
|
1884 |
+
"epoch": 1.04,
|
1885 |
+
"grad_norm": 0.27535739664976405,
|
1886 |
+
"learning_rate": 4.679648900096436e-06,
|
1887 |
+
"loss": 0.6908,
|
1888 |
+
"step": 265
|
1889 |
+
},
|
1890 |
+
{
|
1891 |
+
"epoch": 1.04,
|
1892 |
+
"grad_norm": 0.26763089124769246,
|
1893 |
+
"learning_rate": 4.64766450024873e-06,
|
1894 |
+
"loss": 0.6861,
|
1895 |
+
"step": 266
|
1896 |
+
},
|
1897 |
+
{
|
1898 |
+
"epoch": 1.04,
|
1899 |
+
"grad_norm": 74.38254133611925,
|
1900 |
+
"learning_rate": 4.615694583533418e-06,
|
1901 |
+
"loss": 0.9994,
|
1902 |
+
"step": 267
|
1903 |
+
},
|
1904 |
+
{
|
1905 |
+
"epoch": 1.05,
|
1906 |
+
"grad_norm": 0.2986551656205794,
|
1907 |
+
"learning_rate": 4.583740464108554e-06,
|
1908 |
+
"loss": 0.7075,
|
1909 |
+
"step": 268
|
1910 |
+
},
|
1911 |
+
{
|
1912 |
+
"epoch": 1.05,
|
1913 |
+
"grad_norm": 0.27619714658975547,
|
1914 |
+
"learning_rate": 4.551803455482833e-06,
|
1915 |
+
"loss": 0.6596,
|
1916 |
+
"step": 269
|
1917 |
+
},
|
1918 |
+
{
|
1919 |
+
"epoch": 1.06,
|
1920 |
+
"grad_norm": 0.25242413092583954,
|
1921 |
+
"learning_rate": 4.5198848704615915e-06,
|
1922 |
+
"loss": 0.6628,
|
1923 |
+
"step": 270
|
1924 |
+
},
|
1925 |
+
{
|
1926 |
+
"epoch": 1.06,
|
1927 |
+
"grad_norm": 0.26017582720690735,
|
1928 |
+
"learning_rate": 4.487986021092844e-06,
|
1929 |
+
"loss": 0.6916,
|
1930 |
+
"step": 271
|
1931 |
+
},
|
1932 |
+
{
|
1933 |
+
"epoch": 1.06,
|
1934 |
+
"grad_norm": 0.2719334401383232,
|
1935 |
+
"learning_rate": 4.456108218613346e-06,
|
1936 |
+
"loss": 0.6935,
|
1937 |
+
"step": 272
|
1938 |
+
},
|
1939 |
+
{
|
1940 |
+
"epoch": 1.07,
|
1941 |
+
"grad_norm": 0.2874168693732095,
|
1942 |
+
"learning_rate": 4.424252773394704e-06,
|
1943 |
+
"loss": 0.7013,
|
1944 |
+
"step": 273
|
1945 |
+
},
|
1946 |
+
{
|
1947 |
+
"epoch": 1.07,
|
1948 |
+
"grad_norm": 0.27088215577908004,
|
1949 |
+
"learning_rate": 4.392420994889498e-06,
|
1950 |
+
"loss": 0.693,
|
1951 |
+
"step": 274
|
1952 |
+
},
|
1953 |
+
{
|
1954 |
+
"epoch": 1.08,
|
1955 |
+
"grad_norm": 0.2532812233498042,
|
1956 |
+
"learning_rate": 4.3606141915774695e-06,
|
1957 |
+
"loss": 0.6762,
|
1958 |
+
"step": 275
|
1959 |
+
},
|
1960 |
+
{
|
1961 |
+
"epoch": 1.08,
|
1962 |
+
"grad_norm": 0.263089719520046,
|
1963 |
+
"learning_rate": 4.3288336709117246e-06,
|
1964 |
+
"loss": 0.6677,
|
1965 |
+
"step": 276
|
1966 |
+
},
|
1967 |
+
{
|
1968 |
+
"epoch": 1.08,
|
1969 |
+
"grad_norm": 0.2544227492529696,
|
1970 |
+
"learning_rate": 4.297080739264987e-06,
|
1971 |
+
"loss": 0.6744,
|
1972 |
+
"step": 277
|
1973 |
+
},
|
1974 |
+
{
|
1975 |
+
"epoch": 1.09,
|
1976 |
+
"grad_norm": 0.2645751047762965,
|
1977 |
+
"learning_rate": 4.265356701875911e-06,
|
1978 |
+
"loss": 0.7047,
|
1979 |
+
"step": 278
|
1980 |
+
},
|
1981 |
+
{
|
1982 |
+
"epoch": 1.09,
|
1983 |
+
"grad_norm": 0.2602397068309733,
|
1984 |
+
"learning_rate": 4.23366286279542e-06,
|
1985 |
+
"loss": 0.6792,
|
1986 |
+
"step": 279
|
1987 |
+
},
|
1988 |
+
{
|
1989 |
+
"epoch": 1.1,
|
1990 |
+
"grad_norm": 0.27012218470061766,
|
1991 |
+
"learning_rate": 4.2020005248331056e-06,
|
1992 |
+
"loss": 0.6914,
|
1993 |
+
"step": 280
|
1994 |
+
},
|
1995 |
+
{
|
1996 |
+
"epoch": 1.1,
|
1997 |
+
"grad_norm": 0.2645729945558582,
|
1998 |
+
"learning_rate": 4.170370989503662e-06,
|
1999 |
+
"loss": 0.6812,
|
2000 |
+
"step": 281
|
2001 |
+
},
|
2002 |
+
{
|
2003 |
+
"epoch": 1.1,
|
2004 |
+
"grad_norm": 0.26158176244234604,
|
2005 |
+
"learning_rate": 4.138775556973406e-06,
|
2006 |
+
"loss": 0.6545,
|
2007 |
+
"step": 282
|
2008 |
+
},
|
2009 |
+
{
|
2010 |
+
"epoch": 1.11,
|
2011 |
+
"grad_norm": 0.2609966416888788,
|
2012 |
+
"learning_rate": 4.107215526006818e-06,
|
2013 |
+
"loss": 0.6534,
|
2014 |
+
"step": 283
|
2015 |
+
},
|
2016 |
+
{
|
2017 |
+
"epoch": 1.11,
|
2018 |
+
"grad_norm": 0.2633177456953443,
|
2019 |
+
"learning_rate": 4.075692193913156e-06,
|
2020 |
+
"loss": 0.6617,
|
2021 |
+
"step": 284
|
2022 |
+
},
|
2023 |
+
{
|
2024 |
+
"epoch": 1.12,
|
2025 |
+
"grad_norm": 0.2711366514748812,
|
2026 |
+
"learning_rate": 4.04420685649314e-06,
|
2027 |
+
"loss": 0.7026,
|
2028 |
+
"step": 285
|
2029 |
+
},
|
2030 |
+
{
|
2031 |
+
"epoch": 1.12,
|
2032 |
+
"grad_norm": 0.26016920693531187,
|
2033 |
+
"learning_rate": 4.012760807985665e-06,
|
2034 |
+
"loss": 0.685,
|
2035 |
+
"step": 286
|
2036 |
+
},
|
2037 |
+
{
|
2038 |
+
"epoch": 1.12,
|
2039 |
+
"grad_norm": 0.2634077734164485,
|
2040 |
+
"learning_rate": 3.9813553410146225e-06,
|
2041 |
+
"loss": 0.6732,
|
2042 |
+
"step": 287
|
2043 |
+
},
|
2044 |
+
{
|
2045 |
+
"epoch": 1.13,
|
2046 |
+
"grad_norm": 0.2630739058989318,
|
2047 |
+
"learning_rate": 3.949991746535753e-06,
|
2048 |
+
"loss": 0.6898,
|
2049 |
+
"step": 288
|
2050 |
+
},
|
2051 |
+
{
|
2052 |
+
"epoch": 1.13,
|
2053 |
+
"grad_norm": 0.26810735877032293,
|
2054 |
+
"learning_rate": 3.918671313783583e-06,
|
2055 |
+
"loss": 0.6739,
|
2056 |
+
"step": 289
|
2057 |
+
},
|
2058 |
+
{
|
2059 |
+
"epoch": 1.14,
|
2060 |
+
"grad_norm": 0.2667138269733132,
|
2061 |
+
"learning_rate": 3.887395330218429e-06,
|
2062 |
+
"loss": 0.6649,
|
2063 |
+
"step": 290
|
2064 |
+
},
|
2065 |
+
{
|
2066 |
+
"epoch": 1.14,
|
2067 |
+
"grad_norm": 0.2563222658817468,
|
2068 |
+
"learning_rate": 3.856165081473474e-06,
|
2069 |
+
"loss": 0.708,
|
2070 |
+
"step": 291
|
2071 |
+
},
|
2072 |
+
{
|
2073 |
+
"epoch": 1.14,
|
2074 |
+
"grad_norm": 0.26451201369218524,
|
2075 |
+
"learning_rate": 3.824981851301924e-06,
|
2076 |
+
"loss": 0.6715,
|
2077 |
+
"step": 292
|
2078 |
+
},
|
2079 |
+
{
|
2080 |
+
"epoch": 1.15,
|
2081 |
+
"grad_norm": 0.2598494927634439,
|
2082 |
+
"learning_rate": 3.7938469215242374e-06,
|
2083 |
+
"loss": 0.6955,
|
2084 |
+
"step": 293
|
2085 |
+
},
|
2086 |
+
{
|
2087 |
+
"epoch": 1.15,
|
2088 |
+
"grad_norm": 0.25396403307478727,
|
2089 |
+
"learning_rate": 3.7627615719754294e-06,
|
2090 |
+
"loss": 0.6676,
|
2091 |
+
"step": 294
|
2092 |
+
},
|
2093 |
+
{
|
2094 |
+
"epoch": 1.16,
|
2095 |
+
"grad_norm": 0.2532765659210287,
|
2096 |
+
"learning_rate": 3.731727080452464e-06,
|
2097 |
+
"loss": 0.6748,
|
2098 |
+
"step": 295
|
2099 |
+
},
|
2100 |
+
{
|
2101 |
+
"epoch": 1.16,
|
2102 |
+
"grad_norm": 0.26061271523616963,
|
2103 |
+
"learning_rate": 3.7007447226617367e-06,
|
2104 |
+
"loss": 0.7058,
|
2105 |
+
"step": 296
|
2106 |
+
},
|
2107 |
+
{
|
2108 |
+
"epoch": 1.16,
|
2109 |
+
"grad_norm": 0.25801226716086006,
|
2110 |
+
"learning_rate": 3.669815772166625e-06,
|
2111 |
+
"loss": 0.6717,
|
2112 |
+
"step": 297
|
2113 |
+
},
|
2114 |
+
{
|
2115 |
+
"epoch": 1.17,
|
2116 |
+
"grad_norm": 0.2678578983084559,
|
2117 |
+
"learning_rate": 3.638941500335145e-06,
|
2118 |
+
"loss": 0.6785,
|
2119 |
+
"step": 298
|
2120 |
+
},
|
2121 |
+
{
|
2122 |
+
"epoch": 1.17,
|
2123 |
+
"grad_norm": 0.2629273311111566,
|
2124 |
+
"learning_rate": 3.608123176287685e-06,
|
2125 |
+
"loss": 0.6846,
|
2126 |
+
"step": 299
|
2127 |
+
},
|
2128 |
+
{
|
2129 |
+
"epoch": 1.18,
|
2130 |
+
"grad_norm": 0.26372287416738016,
|
2131 |
+
"learning_rate": 3.5773620668448384e-06,
|
2132 |
+
"loss": 0.7155,
|
2133 |
+
"step": 300
|
2134 |
+
},
|
2135 |
+
{
|
2136 |
+
"epoch": 1.18,
|
2137 |
+
"grad_norm": 0.2705437923133382,
|
2138 |
+
"learning_rate": 3.5466594364753325e-06,
|
2139 |
+
"loss": 0.6723,
|
2140 |
+
"step": 301
|
2141 |
+
},
|
2142 |
+
{
|
2143 |
+
"epoch": 1.18,
|
2144 |
+
"grad_norm": 0.2839291053250124,
|
2145 |
+
"learning_rate": 3.516016547244047e-06,
|
2146 |
+
"loss": 0.7035,
|
2147 |
+
"step": 302
|
2148 |
+
},
|
2149 |
+
{
|
2150 |
+
"epoch": 1.19,
|
2151 |
+
"grad_norm": 0.2760313377640414,
|
2152 |
+
"learning_rate": 3.48543465876014e-06,
|
2153 |
+
"loss": 0.6751,
|
2154 |
+
"step": 303
|
2155 |
+
},
|
2156 |
+
{
|
2157 |
+
"epoch": 1.19,
|
2158 |
+
"grad_norm": 0.25394626546919435,
|
2159 |
+
"learning_rate": 3.4549150281252635e-06,
|
2160 |
+
"loss": 0.6795,
|
2161 |
+
"step": 304
|
2162 |
+
},
|
2163 |
+
{
|
2164 |
+
"epoch": 1.2,
|
2165 |
+
"grad_norm": 0.2591221216055477,
|
2166 |
+
"learning_rate": 3.424458909881897e-06,
|
2167 |
+
"loss": 0.6766,
|
2168 |
+
"step": 305
|
2169 |
+
},
|
2170 |
+
{
|
2171 |
+
"epoch": 1.2,
|
2172 |
+
"grad_norm": 0.2691782924782941,
|
2173 |
+
"learning_rate": 3.3940675559617724e-06,
|
2174 |
+
"loss": 0.6895,
|
2175 |
+
"step": 306
|
2176 |
+
},
|
2177 |
+
{
|
2178 |
+
"epoch": 1.2,
|
2179 |
+
"grad_norm": 0.26815145183562566,
|
2180 |
+
"learning_rate": 3.363742215634416e-06,
|
2181 |
+
"loss": 0.6671,
|
2182 |
+
"step": 307
|
2183 |
+
},
|
2184 |
+
{
|
2185 |
+
"epoch": 1.21,
|
2186 |
+
"grad_norm": 0.26601253229287064,
|
2187 |
+
"learning_rate": 3.3334841354557923e-06,
|
2188 |
+
"loss": 0.6902,
|
2189 |
+
"step": 308
|
2190 |
+
},
|
2191 |
+
{
|
2192 |
+
"epoch": 1.21,
|
2193 |
+
"grad_norm": 0.2759140499002526,
|
2194 |
+
"learning_rate": 3.303294559217063e-06,
|
2195 |
+
"loss": 0.7011,
|
2196 |
+
"step": 309
|
2197 |
+
},
|
2198 |
+
{
|
2199 |
+
"epoch": 1.22,
|
2200 |
+
"grad_norm": 0.2532152571509874,
|
2201 |
+
"learning_rate": 3.273174727893463e-06,
|
2202 |
+
"loss": 0.6631,
|
2203 |
+
"step": 310
|
2204 |
+
},
|
2205 |
+
{
|
2206 |
+
"epoch": 1.22,
|
2207 |
+
"grad_norm": 0.2587732106097895,
|
2208 |
+
"learning_rate": 3.2431258795932863e-06,
|
2209 |
+
"loss": 0.6964,
|
2210 |
+
"step": 311
|
2211 |
+
},
|
2212 |
+
{
|
2213 |
+
"epoch": 1.22,
|
2214 |
+
"grad_norm": 0.26154429819114283,
|
2215 |
+
"learning_rate": 3.213149249506997e-06,
|
2216 |
+
"loss": 0.7018,
|
2217 |
+
"step": 312
|
2218 |
+
},
|
2219 |
+
{
|
2220 |
+
"epoch": 1.23,
|
2221 |
+
"grad_norm": 0.2640699829932556,
|
2222 |
+
"learning_rate": 3.183246069856443e-06,
|
2223 |
+
"loss": 0.6809,
|
2224 |
+
"step": 313
|
2225 |
+
},
|
2226 |
+
{
|
2227 |
+
"epoch": 1.23,
|
2228 |
+
"grad_norm": 0.26350081604751235,
|
2229 |
+
"learning_rate": 3.1534175698442194e-06,
|
2230 |
+
"loss": 0.655,
|
2231 |
+
"step": 314
|
2232 |
+
},
|
2233 |
+
{
|
2234 |
+
"epoch": 1.24,
|
2235 |
+
"grad_norm": 0.2620810766791341,
|
2236 |
+
"learning_rate": 3.12366497560313e-06,
|
2237 |
+
"loss": 0.7034,
|
2238 |
+
"step": 315
|
2239 |
+
},
|
2240 |
+
{
|
2241 |
+
"epoch": 1.24,
|
2242 |
+
"grad_norm": 0.26759545817238656,
|
2243 |
+
"learning_rate": 3.093989510145792e-06,
|
2244 |
+
"loss": 0.7238,
|
2245 |
+
"step": 316
|
2246 |
+
},
|
2247 |
+
{
|
2248 |
+
"epoch": 1.24,
|
2249 |
+
"grad_norm": 0.26779990918516644,
|
2250 |
+
"learning_rate": 3.0643923933143603e-06,
|
2251 |
+
"loss": 0.6733,
|
2252 |
+
"step": 317
|
2253 |
+
},
|
2254 |
+
{
|
2255 |
+
"epoch": 1.25,
|
2256 |
+
"grad_norm": 0.266460909749917,
|
2257 |
+
"learning_rate": 3.0348748417303826e-06,
|
2258 |
+
"loss": 0.6708,
|
2259 |
+
"step": 318
|
2260 |
+
},
|
2261 |
+
{
|
2262 |
+
"epoch": 1.25,
|
2263 |
+
"grad_norm": 0.26133722668937404,
|
2264 |
+
"learning_rate": 3.005438068744792e-06,
|
2265 |
+
"loss": 0.6838,
|
2266 |
+
"step": 319
|
2267 |
+
},
|
2268 |
+
{
|
2269 |
+
"epoch": 1.26,
|
2270 |
+
"grad_norm": 0.26893527319559857,
|
2271 |
+
"learning_rate": 2.976083284388031e-06,
|
2272 |
+
"loss": 0.662,
|
2273 |
+
"step": 320
|
2274 |
+
},
|
2275 |
+
{
|
2276 |
+
"epoch": 1.26,
|
2277 |
+
"grad_norm": 0.2699706439018165,
|
2278 |
+
"learning_rate": 2.9468116953203107e-06,
|
2279 |
+
"loss": 0.6867,
|
2280 |
+
"step": 321
|
2281 |
+
},
|
2282 |
+
{
|
2283 |
+
"epoch": 1.26,
|
2284 |
+
"grad_norm": 0.2660357193246072,
|
2285 |
+
"learning_rate": 2.9176245047820064e-06,
|
2286 |
+
"loss": 0.6802,
|
2287 |
+
"step": 322
|
2288 |
+
},
|
2289 |
+
{
|
2290 |
+
"epoch": 1.27,
|
2291 |
+
"grad_norm": 0.2676372441332764,
|
2292 |
+
"learning_rate": 2.8885229125442022e-06,
|
2293 |
+
"loss": 0.7143,
|
2294 |
+
"step": 323
|
2295 |
+
},
|
2296 |
+
{
|
2297 |
+
"epoch": 1.27,
|
2298 |
+
"grad_norm": 0.26172654998349437,
|
2299 |
+
"learning_rate": 2.859508114859374e-06,
|
2300 |
+
"loss": 0.6688,
|
2301 |
+
"step": 324
|
2302 |
+
},
|
2303 |
+
{
|
2304 |
+
"epoch": 1.28,
|
2305 |
+
"grad_norm": 0.26622148926216194,
|
2306 |
+
"learning_rate": 2.83058130441221e-06,
|
2307 |
+
"loss": 0.671,
|
2308 |
+
"step": 325
|
2309 |
+
},
|
2310 |
+
{
|
2311 |
+
"epoch": 1.28,
|
2312 |
+
"grad_norm": 0.28436198488003145,
|
2313 |
+
"learning_rate": 2.80174367027059e-06,
|
2314 |
+
"loss": 0.7157,
|
2315 |
+
"step": 326
|
2316 |
+
},
|
2317 |
+
{
|
2318 |
+
"epoch": 1.28,
|
2319 |
+
"grad_norm": 0.2637348527869296,
|
2320 |
+
"learning_rate": 2.772996397836704e-06,
|
2321 |
+
"loss": 0.6893,
|
2322 |
+
"step": 327
|
2323 |
+
},
|
2324 |
+
{
|
2325 |
+
"epoch": 1.29,
|
2326 |
+
"grad_norm": 0.27094660677035604,
|
2327 |
+
"learning_rate": 2.7443406687983267e-06,
|
2328 |
+
"loss": 0.7149,
|
2329 |
+
"step": 328
|
2330 |
+
},
|
2331 |
+
{
|
2332 |
+
"epoch": 1.29,
|
2333 |
+
"grad_norm": 0.26943858696681655,
|
2334 |
+
"learning_rate": 2.7157776610802416e-06,
|
2335 |
+
"loss": 0.6756,
|
2336 |
+
"step": 329
|
2337 |
+
},
|
2338 |
+
{
|
2339 |
+
"epoch": 1.3,
|
2340 |
+
"grad_norm": 0.2637431948145577,
|
2341 |
+
"learning_rate": 2.687308548795825e-06,
|
2342 |
+
"loss": 0.6731,
|
2343 |
+
"step": 330
|
2344 |
+
},
|
2345 |
+
{
|
2346 |
+
"epoch": 1.3,
|
2347 |
+
"grad_norm": 0.2605764257900338,
|
2348 |
+
"learning_rate": 2.6589345021987725e-06,
|
2349 |
+
"loss": 0.6601,
|
2350 |
+
"step": 331
|
2351 |
+
},
|
2352 |
+
{
|
2353 |
+
"epoch": 1.3,
|
2354 |
+
"grad_norm": 0.2691370320929689,
|
2355 |
+
"learning_rate": 2.6306566876350072e-06,
|
2356 |
+
"loss": 0.6747,
|
2357 |
+
"step": 332
|
2358 |
+
},
|
2359 |
+
{
|
2360 |
+
"epoch": 1.31,
|
2361 |
+
"grad_norm": 0.26505353096492007,
|
2362 |
+
"learning_rate": 2.6024762674947313e-06,
|
2363 |
+
"loss": 0.6355,
|
2364 |
+
"step": 333
|
2365 |
+
},
|
2366 |
+
{
|
2367 |
+
"epoch": 1.31,
|
2368 |
+
"grad_norm": 0.2771254154185314,
|
2369 |
+
"learning_rate": 2.5743944001646394e-06,
|
2370 |
+
"loss": 0.6679,
|
2371 |
+
"step": 334
|
2372 |
+
},
|
2373 |
+
{
|
2374 |
+
"epoch": 1.32,
|
2375 |
+
"grad_norm": 0.2734747453519109,
|
2376 |
+
"learning_rate": 2.5464122399803126e-06,
|
2377 |
+
"loss": 0.6842,
|
2378 |
+
"step": 335
|
2379 |
+
},
|
2380 |
+
{
|
2381 |
+
"epoch": 1.32,
|
2382 |
+
"grad_norm": 0.26644275829657593,
|
2383 |
+
"learning_rate": 2.5185309371787515e-06,
|
2384 |
+
"loss": 0.6986,
|
2385 |
+
"step": 336
|
2386 |
+
},
|
2387 |
+
{
|
2388 |
+
"epoch": 1.32,
|
2389 |
+
"grad_norm": 2.921169787601039,
|
2390 |
+
"learning_rate": 2.4907516378511137e-06,
|
2391 |
+
"loss": 0.9339,
|
2392 |
+
"step": 337
|
2393 |
+
},
|
2394 |
+
{
|
2395 |
+
"epoch": 1.33,
|
2396 |
+
"grad_norm": 0.25960894123414624,
|
2397 |
+
"learning_rate": 2.46307548389559e-06,
|
2398 |
+
"loss": 0.6743,
|
2399 |
+
"step": 338
|
2400 |
+
},
|
2401 |
+
{
|
2402 |
+
"epoch": 1.33,
|
2403 |
+
"grad_norm": 0.2637156946948773,
|
2404 |
+
"learning_rate": 2.43550361297047e-06,
|
2405 |
+
"loss": 0.682,
|
2406 |
+
"step": 339
|
2407 |
+
},
|
2408 |
+
{
|
2409 |
+
"epoch": 1.34,
|
2410 |
+
"grad_norm": 0.26481304373722364,
|
2411 |
+
"learning_rate": 2.408037158447375e-06,
|
2412 |
+
"loss": 0.6838,
|
2413 |
+
"step": 340
|
2414 |
+
},
|
2415 |
+
{
|
2416 |
+
"epoch": 1.34,
|
2417 |
+
"grad_norm": 0.3098032445823631,
|
2418 |
+
"learning_rate": 2.3806772493646725e-06,
|
2419 |
+
"loss": 0.6569,
|
2420 |
+
"step": 341
|
2421 |
+
},
|
2422 |
+
{
|
2423 |
+
"epoch": 1.34,
|
2424 |
+
"grad_norm": 0.26219269959571206,
|
2425 |
+
"learning_rate": 2.353425010381063e-06,
|
2426 |
+
"loss": 0.6761,
|
2427 |
+
"step": 342
|
2428 |
+
},
|
2429 |
+
{
|
2430 |
+
"epoch": 1.35,
|
2431 |
+
"grad_norm": 0.2595963563694489,
|
2432 |
+
"learning_rate": 2.3262815617293517e-06,
|
2433 |
+
"loss": 0.6705,
|
2434 |
+
"step": 343
|
2435 |
+
},
|
2436 |
+
{
|
2437 |
+
"epoch": 1.35,
|
2438 |
+
"grad_norm": 6.834107729255299,
|
2439 |
+
"learning_rate": 2.2992480191704003e-06,
|
2440 |
+
"loss": 0.9304,
|
2441 |
+
"step": 344
|
2442 |
+
},
|
2443 |
+
{
|
2444 |
+
"epoch": 1.36,
|
2445 |
+
"grad_norm": 0.27845487671808766,
|
2446 |
+
"learning_rate": 2.272325493947257e-06,
|
2447 |
+
"loss": 0.7032,
|
2448 |
+
"step": 345
|
2449 |
+
},
|
2450 |
+
{
|
2451 |
+
"epoch": 1.36,
|
2452 |
+
"grad_norm": 0.27640918477115356,
|
2453 |
+
"learning_rate": 2.245515092739488e-06,
|
2454 |
+
"loss": 0.6782,
|
2455 |
+
"step": 346
|
2456 |
+
},
|
2457 |
+
{
|
2458 |
+
"epoch": 1.36,
|
2459 |
+
"grad_norm": 0.2807587758407648,
|
2460 |
+
"learning_rate": 2.2188179176176767e-06,
|
2461 |
+
"loss": 0.6932,
|
2462 |
+
"step": 347
|
2463 |
+
},
|
2464 |
+
{
|
2465 |
+
"epoch": 1.37,
|
2466 |
+
"grad_norm": 0.27767259525555504,
|
2467 |
+
"learning_rate": 2.1922350659981262e-06,
|
2468 |
+
"loss": 0.6466,
|
2469 |
+
"step": 348
|
2470 |
+
},
|
2471 |
+
{
|
2472 |
+
"epoch": 1.37,
|
2473 |
+
"grad_norm": 0.267658673895331,
|
2474 |
+
"learning_rate": 2.165767630597752e-06,
|
2475 |
+
"loss": 0.7089,
|
2476 |
+
"step": 349
|
2477 |
+
},
|
2478 |
+
{
|
2479 |
+
"epoch": 1.38,
|
2480 |
+
"grad_norm": 0.2745228363539692,
|
2481 |
+
"learning_rate": 2.139416699389153e-06,
|
2482 |
+
"loss": 0.6778,
|
2483 |
+
"step": 350
|
2484 |
+
},
|
2485 |
+
{
|
2486 |
+
"epoch": 1.38,
|
2487 |
+
"grad_norm": 0.26408657536920843,
|
2488 |
+
"learning_rate": 2.1131833555559037e-06,
|
2489 |
+
"loss": 0.693,
|
2490 |
+
"step": 351
|
2491 |
+
},
|
2492 |
+
{
|
2493 |
+
"epoch": 1.38,
|
2494 |
+
"grad_norm": 0.27582062474841573,
|
2495 |
+
"learning_rate": 2.08706867744802e-06,
|
2496 |
+
"loss": 0.6896,
|
2497 |
+
"step": 352
|
2498 |
+
},
|
2499 |
+
{
|
2500 |
+
"epoch": 1.39,
|
2501 |
+
"grad_norm": 0.26826511006390147,
|
2502 |
+
"learning_rate": 2.061073738537635e-06,
|
2503 |
+
"loss": 0.6796,
|
2504 |
+
"step": 353
|
2505 |
+
},
|
2506 |
+
{
|
2507 |
+
"epoch": 1.39,
|
2508 |
+
"grad_norm": 0.26630216372896987,
|
2509 |
+
"learning_rate": 2.0351996073748713e-06,
|
2510 |
+
"loss": 0.664,
|
2511 |
+
"step": 354
|
2512 |
+
},
|
2513 |
+
{
|
2514 |
+
"epoch": 1.4,
|
2515 |
+
"grad_norm": 0.2809694093215496,
|
2516 |
+
"learning_rate": 2.00944734754392e-06,
|
2517 |
+
"loss": 0.7044,
|
2518 |
+
"step": 355
|
2519 |
+
},
|
2520 |
+
{
|
2521 |
+
"epoch": 1.4,
|
2522 |
+
"grad_norm": 1.2984772108139377,
|
2523 |
+
"learning_rate": 1.983818017619318e-06,
|
2524 |
+
"loss": 0.9348,
|
2525 |
+
"step": 356
|
2526 |
+
},
|
2527 |
+
{
|
2528 |
+
"epoch": 1.4,
|
2529 |
+
"grad_norm": 0.2721943586746493,
|
2530 |
+
"learning_rate": 1.9583126711224342e-06,
|
2531 |
+
"loss": 0.6918,
|
2532 |
+
"step": 357
|
2533 |
+
},
|
2534 |
+
{
|
2535 |
+
"epoch": 1.41,
|
2536 |
+
"grad_norm": 0.27480703238103743,
|
2537 |
+
"learning_rate": 1.932932356478168e-06,
|
2538 |
+
"loss": 0.6854,
|
2539 |
+
"step": 358
|
2540 |
+
},
|
2541 |
+
{
|
2542 |
+
"epoch": 1.41,
|
2543 |
+
"grad_norm": 0.27867368393846137,
|
2544 |
+
"learning_rate": 1.9076781169718426e-06,
|
2545 |
+
"loss": 0.6892,
|
2546 |
+
"step": 359
|
2547 |
+
},
|
2548 |
+
{
|
2549 |
+
"epoch": 1.42,
|
2550 |
+
"grad_norm": 0.2747868621778029,
|
2551 |
+
"learning_rate": 1.8825509907063328e-06,
|
2552 |
+
"loss": 0.6947,
|
2553 |
+
"step": 360
|
2554 |
+
},
|
2555 |
+
{
|
2556 |
+
"epoch": 1.42,
|
2557 |
+
"grad_norm": 0.2819831023326237,
|
2558 |
+
"learning_rate": 1.857552010559382e-06,
|
2559 |
+
"loss": 0.7059,
|
2560 |
+
"step": 361
|
2561 |
+
},
|
2562 |
+
{
|
2563 |
+
"epoch": 1.42,
|
2564 |
+
"grad_norm": 0.27392909848006375,
|
2565 |
+
"learning_rate": 1.8326822041411524e-06,
|
2566 |
+
"loss": 0.6909,
|
2567 |
+
"step": 362
|
2568 |
+
},
|
2569 |
+
{
|
2570 |
+
"epoch": 1.43,
|
2571 |
+
"grad_norm": 0.2743865258535757,
|
2572 |
+
"learning_rate": 1.8079425937519729e-06,
|
2573 |
+
"loss": 0.679,
|
2574 |
+
"step": 363
|
2575 |
+
},
|
2576 |
+
{
|
2577 |
+
"epoch": 1.43,
|
2578 |
+
"grad_norm": 2.5387012983068686,
|
2579 |
+
"learning_rate": 1.7833341963403312e-06,
|
2580 |
+
"loss": 0.8855,
|
2581 |
+
"step": 364
|
2582 |
+
},
|
2583 |
+
{
|
2584 |
+
"epoch": 1.44,
|
2585 |
+
"grad_norm": 0.265533513891752,
|
2586 |
+
"learning_rate": 1.7588580234610592e-06,
|
2587 |
+
"loss": 0.6915,
|
2588 |
+
"step": 365
|
2589 |
+
},
|
2590 |
+
{
|
2591 |
+
"epoch": 1.44,
|
2592 |
+
"grad_norm": 0.27359948413194535,
|
2593 |
+
"learning_rate": 1.7345150812337564e-06,
|
2594 |
+
"loss": 0.6983,
|
2595 |
+
"step": 366
|
2596 |
+
},
|
2597 |
+
{
|
2598 |
+
"epoch": 1.44,
|
2599 |
+
"grad_norm": 0.2742529435490673,
|
2600 |
+
"learning_rate": 1.7103063703014372e-06,
|
2601 |
+
"loss": 0.6712,
|
2602 |
+
"step": 367
|
2603 |
+
},
|
2604 |
+
{
|
2605 |
+
"epoch": 1.45,
|
2606 |
+
"grad_norm": 0.27199602044830407,
|
2607 |
+
"learning_rate": 1.6862328857893856e-06,
|
2608 |
+
"loss": 0.6929,
|
2609 |
+
"step": 368
|
2610 |
+
},
|
2611 |
+
{
|
2612 |
+
"epoch": 1.45,
|
2613 |
+
"grad_norm": 0.26752081718353027,
|
2614 |
+
"learning_rate": 1.6622956172642601e-06,
|
2615 |
+
"loss": 0.6693,
|
2616 |
+
"step": 369
|
2617 |
+
},
|
2618 |
+
{
|
2619 |
+
"epoch": 1.46,
|
2620 |
+
"grad_norm": 0.2729904749450422,
|
2621 |
+
"learning_rate": 1.6384955486934157e-06,
|
2622 |
+
"loss": 0.6545,
|
2623 |
+
"step": 370
|
2624 |
+
},
|
2625 |
+
{
|
2626 |
+
"epoch": 1.46,
|
2627 |
+
"grad_norm": 0.27686659493721505,
|
2628 |
+
"learning_rate": 1.6148336584044539e-06,
|
2629 |
+
"loss": 0.6957,
|
2630 |
+
"step": 371
|
2631 |
+
},
|
2632 |
+
{
|
2633 |
+
"epoch": 1.46,
|
2634 |
+
"grad_norm": 0.27203211099316454,
|
2635 |
+
"learning_rate": 1.5913109190450033e-06,
|
2636 |
+
"loss": 0.6709,
|
2637 |
+
"step": 372
|
2638 |
+
},
|
2639 |
+
{
|
2640 |
+
"epoch": 1.47,
|
2641 |
+
"grad_norm": 0.2748872025880921,
|
2642 |
+
"learning_rate": 1.567928297542749e-06,
|
2643 |
+
"loss": 0.6648,
|
2644 |
+
"step": 373
|
2645 |
+
},
|
2646 |
+
{
|
2647 |
+
"epoch": 1.47,
|
2648 |
+
"grad_norm": 0.28544562477258,
|
2649 |
+
"learning_rate": 1.544686755065677e-06,
|
2650 |
+
"loss": 0.6937,
|
2651 |
+
"step": 374
|
2652 |
+
},
|
2653 |
+
{
|
2654 |
+
"epoch": 1.48,
|
2655 |
+
"grad_norm": 0.27110159404128226,
|
2656 |
+
"learning_rate": 1.5215872469825682e-06,
|
2657 |
+
"loss": 0.6593,
|
2658 |
+
"step": 375
|
2659 |
+
},
|
2660 |
+
{
|
2661 |
+
"epoch": 1.48,
|
2662 |
+
"eval_loss": 0.6996302008628845,
|
2663 |
+
"eval_runtime": 96.9399,
|
2664 |
+
"eval_samples_per_second": 18.238,
|
2665 |
+
"eval_steps_per_second": 0.382,
|
2666 |
+
"step": 375
|
2667 |
+
},
|
2668 |
+
{
|
2669 |
+
"epoch": 1.48,
|
2670 |
+
"grad_norm": 0.28648432605335455,
|
2671 |
+
"learning_rate": 1.4986307228237268e-06,
|
2672 |
+
"loss": 0.6883,
|
2673 |
+
"step": 376
|
2674 |
+
},
|
2675 |
+
{
|
2676 |
+
"epoch": 1.48,
|
2677 |
+
"grad_norm": 0.2695264027977092,
|
2678 |
+
"learning_rate": 1.4758181262419425e-06,
|
2679 |
+
"loss": 0.6696,
|
2680 |
+
"step": 377
|
2681 |
+
},
|
2682 |
+
{
|
2683 |
+
"epoch": 1.49,
|
2684 |
+
"grad_norm": 0.2786040566891135,
|
2685 |
+
"learning_rate": 1.4531503949737107e-06,
|
2686 |
+
"loss": 0.6768,
|
2687 |
+
"step": 378
|
2688 |
+
},
|
2689 |
+
{
|
2690 |
+
"epoch": 1.49,
|
2691 |
+
"grad_norm": 0.2730138945863401,
|
2692 |
+
"learning_rate": 1.4306284608006837e-06,
|
2693 |
+
"loss": 0.699,
|
2694 |
+
"step": 379
|
2695 |
+
},
|
2696 |
+
{
|
2697 |
+
"epoch": 1.5,
|
2698 |
+
"grad_norm": 0.28711818986138005,
|
2699 |
+
"learning_rate": 1.4082532495113627e-06,
|
2700 |
+
"loss": 0.6961,
|
2701 |
+
"step": 380
|
2702 |
+
},
|
2703 |
+
{
|
2704 |
+
"epoch": 1.5,
|
2705 |
+
"grad_norm": 0.27838100192134935,
|
2706 |
+
"learning_rate": 1.3860256808630429e-06,
|
2707 |
+
"loss": 0.6589,
|
2708 |
+
"step": 381
|
2709 |
+
},
|
2710 |
+
{
|
2711 |
+
"epoch": 1.5,
|
2712 |
+
"grad_norm": 0.2798399005913698,
|
2713 |
+
"learning_rate": 1.3639466685440133e-06,
|
2714 |
+
"loss": 0.6924,
|
2715 |
+
"step": 382
|
2716 |
+
},
|
2717 |
+
{
|
2718 |
+
"epoch": 1.51,
|
2719 |
+
"grad_norm": 0.2801056534585314,
|
2720 |
+
"learning_rate": 1.3420171201359933e-06,
|
2721 |
+
"loss": 0.7047,
|
2722 |
+
"step": 383
|
2723 |
+
},
|
2724 |
+
{
|
2725 |
+
"epoch": 1.51,
|
2726 |
+
"grad_norm": 0.28576658015544487,
|
2727 |
+
"learning_rate": 1.3202379370768254e-06,
|
2728 |
+
"loss": 0.6617,
|
2729 |
+
"step": 384
|
2730 |
+
},
|
2731 |
+
{
|
2732 |
+
"epoch": 1.52,
|
2733 |
+
"grad_norm": 1.3100321738765892,
|
2734 |
+
"learning_rate": 1.298610014623423e-06,
|
2735 |
+
"loss": 0.9236,
|
2736 |
+
"step": 385
|
2737 |
+
},
|
2738 |
+
{
|
2739 |
+
"epoch": 1.52,
|
2740 |
+
"grad_norm": 0.303191205875695,
|
2741 |
+
"learning_rate": 1.2771342418149658e-06,
|
2742 |
+
"loss": 0.6896,
|
2743 |
+
"step": 386
|
2744 |
+
},
|
2745 |
+
{
|
2746 |
+
"epoch": 1.52,
|
2747 |
+
"grad_norm": 0.29469211064765755,
|
2748 |
+
"learning_rate": 1.2558115014363592e-06,
|
2749 |
+
"loss": 0.6804,
|
2750 |
+
"step": 387
|
2751 |
+
},
|
2752 |
+
{
|
2753 |
+
"epoch": 1.53,
|
2754 |
+
"grad_norm": 0.2772656639598833,
|
2755 |
+
"learning_rate": 1.234642669981946e-06,
|
2756 |
+
"loss": 0.7043,
|
2757 |
+
"step": 388
|
2758 |
+
},
|
2759 |
+
{
|
2760 |
+
"epoch": 1.53,
|
2761 |
+
"grad_norm": 0.28874341170670975,
|
2762 |
+
"learning_rate": 1.2136286176194744e-06,
|
2763 |
+
"loss": 0.6839,
|
2764 |
+
"step": 389
|
2765 |
+
},
|
2766 |
+
{
|
2767 |
+
"epoch": 1.54,
|
2768 |
+
"grad_norm": 0.29443238526351323,
|
2769 |
+
"learning_rate": 1.1927702081543279e-06,
|
2770 |
+
"loss": 0.6852,
|
2771 |
+
"step": 390
|
2772 |
+
},
|
2773 |
+
{
|
2774 |
+
"epoch": 1.54,
|
2775 |
+
"grad_norm": 0.28011985365824127,
|
2776 |
+
"learning_rate": 1.1720682989940264e-06,
|
2777 |
+
"loss": 0.7019,
|
2778 |
+
"step": 391
|
2779 |
+
},
|
2780 |
+
{
|
2781 |
+
"epoch": 1.54,
|
2782 |
+
"grad_norm": 0.2987249208096274,
|
2783 |
+
"learning_rate": 1.1515237411129698e-06,
|
2784 |
+
"loss": 0.6625,
|
2785 |
+
"step": 392
|
2786 |
+
},
|
2787 |
+
{
|
2788 |
+
"epoch": 1.55,
|
2789 |
+
"grad_norm": 0.30150125882304396,
|
2790 |
+
"learning_rate": 1.1311373790174656e-06,
|
2791 |
+
"loss": 0.7102,
|
2792 |
+
"step": 393
|
2793 |
+
},
|
2794 |
+
{
|
2795 |
+
"epoch": 1.55,
|
2796 |
+
"grad_norm": 0.28396138619493894,
|
2797 |
+
"learning_rate": 1.1109100507110133e-06,
|
2798 |
+
"loss": 0.6538,
|
2799 |
+
"step": 394
|
2800 |
+
},
|
2801 |
+
{
|
2802 |
+
"epoch": 1.56,
|
2803 |
+
"grad_norm": 0.28445333602874173,
|
2804 |
+
"learning_rate": 1.0908425876598512e-06,
|
2805 |
+
"loss": 0.6719,
|
2806 |
+
"step": 395
|
2807 |
+
},
|
2808 |
+
{
|
2809 |
+
"epoch": 1.56,
|
2810 |
+
"grad_norm": 0.2914051878027514,
|
2811 |
+
"learning_rate": 1.0709358147587883e-06,
|
2812 |
+
"loss": 0.6803,
|
2813 |
+
"step": 396
|
2814 |
+
},
|
2815 |
+
{
|
2816 |
+
"epoch": 1.56,
|
2817 |
+
"grad_norm": 0.2969873740157493,
|
2818 |
+
"learning_rate": 1.0511905502972885e-06,
|
2819 |
+
"loss": 0.6845,
|
2820 |
+
"step": 397
|
2821 |
+
},
|
2822 |
+
{
|
2823 |
+
"epoch": 1.57,
|
2824 |
+
"grad_norm": 0.27955221055069657,
|
2825 |
+
"learning_rate": 1.031607605925839e-06,
|
2826 |
+
"loss": 0.6819,
|
2827 |
+
"step": 398
|
2828 |
+
},
|
2829 |
+
{
|
2830 |
+
"epoch": 1.57,
|
2831 |
+
"grad_norm": 0.2840904640426781,
|
2832 |
+
"learning_rate": 1.0121877866225783e-06,
|
2833 |
+
"loss": 0.6685,
|
2834 |
+
"step": 399
|
2835 |
+
},
|
2836 |
+
{
|
2837 |
+
"epoch": 1.58,
|
2838 |
+
"grad_norm": 0.2866769315662431,
|
2839 |
+
"learning_rate": 9.929318906602176e-07,
|
2840 |
+
"loss": 0.7126,
|
2841 |
+
"step": 400
|
2842 |
+
},
|
2843 |
+
{
|
2844 |
+
"epoch": 1.58,
|
2845 |
+
"grad_norm": 0.28635331619928306,
|
2846 |
+
"learning_rate": 9.738407095732195e-07,
|
2847 |
+
"loss": 0.6825,
|
2848 |
+
"step": 401
|
2849 |
+
},
|
2850 |
+
{
|
2851 |
+
"epoch": 1.58,
|
2852 |
+
"grad_norm": 0.29612030431665504,
|
2853 |
+
"learning_rate": 9.549150281252633e-07,
|
2854 |
+
"loss": 0.6889,
|
2855 |
+
"step": 402
|
2856 |
+
},
|
2857 |
+
{
|
2858 |
+
"epoch": 1.59,
|
2859 |
+
"grad_norm": 0.2800350134356635,
|
2860 |
+
"learning_rate": 9.361556242769871e-07,
|
2861 |
+
"loss": 0.6902,
|
2862 |
+
"step": 403
|
2863 |
+
},
|
2864 |
+
{
|
2865 |
+
"epoch": 1.59,
|
2866 |
+
"grad_norm": 0.303825841465723,
|
2867 |
+
"learning_rate": 9.175632691540065e-07,
|
2868 |
+
"loss": 0.6949,
|
2869 |
+
"step": 404
|
2870 |
+
},
|
2871 |
+
{
|
2872 |
+
"epoch": 1.6,
|
2873 |
+
"grad_norm": 0.2869303466691903,
|
2874 |
+
"learning_rate": 8.991387270152202e-07,
|
2875 |
+
"loss": 0.6953,
|
2876 |
+
"step": 405
|
2877 |
+
},
|
2878 |
+
{
|
2879 |
+
"epoch": 1.6,
|
2880 |
+
"grad_norm": 0.2822567891211309,
|
2881 |
+
"learning_rate": 8.808827552213917e-07,
|
2882 |
+
"loss": 0.6733,
|
2883 |
+
"step": 406
|
2884 |
+
},
|
2885 |
+
{
|
2886 |
+
"epoch": 1.6,
|
2887 |
+
"grad_norm": 0.29613652418881947,
|
2888 |
+
"learning_rate": 8.627961042040183e-07,
|
2889 |
+
"loss": 0.6721,
|
2890 |
+
"step": 407
|
2891 |
+
},
|
2892 |
+
{
|
2893 |
+
"epoch": 1.61,
|
2894 |
+
"grad_norm": 0.2904383828418472,
|
2895 |
+
"learning_rate": 8.448795174344803e-07,
|
2896 |
+
"loss": 0.6849,
|
2897 |
+
"step": 408
|
2898 |
+
},
|
2899 |
+
{
|
2900 |
+
"epoch": 1.61,
|
2901 |
+
"grad_norm": 0.28422518396116003,
|
2902 |
+
"learning_rate": 8.271337313934869e-07,
|
2903 |
+
"loss": 0.676,
|
2904 |
+
"step": 409
|
2905 |
+
},
|
2906 |
+
{
|
2907 |
+
"epoch": 1.62,
|
2908 |
+
"grad_norm": 0.2998884374161429,
|
2909 |
+
"learning_rate": 8.095594755407971e-07,
|
2910 |
+
"loss": 0.72,
|
2911 |
+
"step": 410
|
2912 |
+
},
|
2913 |
+
{
|
2914 |
+
"epoch": 1.62,
|
2915 |
+
"grad_norm": 0.2877123964038153,
|
2916 |
+
"learning_rate": 7.921574722852343e-07,
|
2917 |
+
"loss": 0.686,
|
2918 |
+
"step": 411
|
2919 |
+
},
|
2920 |
+
{
|
2921 |
+
"epoch": 1.62,
|
2922 |
+
"grad_norm": 0.2848351263069502,
|
2923 |
+
"learning_rate": 7.749284369549954e-07,
|
2924 |
+
"loss": 0.6755,
|
2925 |
+
"step": 412
|
2926 |
+
},
|
2927 |
+
{
|
2928 |
+
"epoch": 1.63,
|
2929 |
+
"grad_norm": 3.762805837262192,
|
2930 |
+
"learning_rate": 7.578730777682386e-07,
|
2931 |
+
"loss": 0.9037,
|
2932 |
+
"step": 413
|
2933 |
+
},
|
2934 |
+
{
|
2935 |
+
"epoch": 1.63,
|
2936 |
+
"grad_norm": 0.2782769592021476,
|
2937 |
+
"learning_rate": 7.409920958039795e-07,
|
2938 |
+
"loss": 0.6686,
|
2939 |
+
"step": 414
|
2940 |
+
},
|
2941 |
+
{
|
2942 |
+
"epoch": 1.64,
|
2943 |
+
"grad_norm": 0.28369386272785363,
|
2944 |
+
"learning_rate": 7.242861849732696e-07,
|
2945 |
+
"loss": 0.6772,
|
2946 |
+
"step": 415
|
2947 |
+
},
|
2948 |
+
{
|
2949 |
+
"epoch": 1.64,
|
2950 |
+
"grad_norm": 0.28870985589458403,
|
2951 |
+
"learning_rate": 7.077560319906696e-07,
|
2952 |
+
"loss": 0.6665,
|
2953 |
+
"step": 416
|
2954 |
+
},
|
2955 |
+
{
|
2956 |
+
"epoch": 1.64,
|
2957 |
+
"grad_norm": 0.2880267458624612,
|
2958 |
+
"learning_rate": 6.914023163460248e-07,
|
2959 |
+
"loss": 0.6767,
|
2960 |
+
"step": 417
|
2961 |
+
},
|
2962 |
+
{
|
2963 |
+
"epoch": 1.65,
|
2964 |
+
"grad_norm": 0.2879073116640725,
|
2965 |
+
"learning_rate": 6.752257102765325e-07,
|
2966 |
+
"loss": 0.6733,
|
2967 |
+
"step": 418
|
2968 |
+
},
|
2969 |
+
{
|
2970 |
+
"epoch": 1.65,
|
2971 |
+
"grad_norm": 0.2978223401759706,
|
2972 |
+
"learning_rate": 6.592268787391077e-07,
|
2973 |
+
"loss": 0.707,
|
2974 |
+
"step": 419
|
2975 |
+
},
|
2976 |
+
{
|
2977 |
+
"epoch": 1.66,
|
2978 |
+
"grad_norm": 0.2781074725093229,
|
2979 |
+
"learning_rate": 6.43406479383053e-07,
|
2980 |
+
"loss": 0.6962,
|
2981 |
+
"step": 420
|
2982 |
+
},
|
2983 |
+
{
|
2984 |
+
"epoch": 1.66,
|
2985 |
+
"grad_norm": 0.29577562012306474,
|
2986 |
+
"learning_rate": 6.277651625230219e-07,
|
2987 |
+
"loss": 0.6772,
|
2988 |
+
"step": 421
|
2989 |
+
},
|
2990 |
+
{
|
2991 |
+
"epoch": 1.66,
|
2992 |
+
"grad_norm": 0.2848699679509908,
|
2993 |
+
"learning_rate": 6.12303571112286e-07,
|
2994 |
+
"loss": 0.7008,
|
2995 |
+
"step": 422
|
2996 |
+
},
|
2997 |
+
{
|
2998 |
+
"epoch": 1.67,
|
2999 |
+
"grad_norm": 0.2728708533046375,
|
3000 |
+
"learning_rate": 5.9702234071631e-07,
|
3001 |
+
"loss": 0.6994,
|
3002 |
+
"step": 423
|
3003 |
+
},
|
3004 |
+
{
|
3005 |
+
"epoch": 1.67,
|
3006 |
+
"grad_norm": 0.2971147397482144,
|
3007 |
+
"learning_rate": 5.819220994866237e-07,
|
3008 |
+
"loss": 0.6784,
|
3009 |
+
"step": 424
|
3010 |
+
},
|
3011 |
+
{
|
3012 |
+
"epoch": 1.67,
|
3013 |
+
"grad_norm": 0.2918077307247773,
|
3014 |
+
"learning_rate": 5.670034681349995e-07,
|
3015 |
+
"loss": 0.6798,
|
3016 |
+
"step": 425
|
3017 |
+
},
|
3018 |
+
{
|
3019 |
+
"epoch": 1.68,
|
3020 |
+
"grad_norm": 0.2766527969263755,
|
3021 |
+
"learning_rate": 5.522670599079416e-07,
|
3022 |
+
"loss": 0.692,
|
3023 |
+
"step": 426
|
3024 |
+
},
|
3025 |
+
{
|
3026 |
+
"epoch": 1.68,
|
3027 |
+
"grad_norm": 0.2896023594106076,
|
3028 |
+
"learning_rate": 5.377134805614714e-07,
|
3029 |
+
"loss": 0.6885,
|
3030 |
+
"step": 427
|
3031 |
+
},
|
3032 |
+
{
|
3033 |
+
"epoch": 1.69,
|
3034 |
+
"grad_norm": 0.29226174571780184,
|
3035 |
+
"learning_rate": 5.233433283362349e-07,
|
3036 |
+
"loss": 0.6609,
|
3037 |
+
"step": 428
|
3038 |
+
},
|
3039 |
+
{
|
3040 |
+
"epoch": 1.69,
|
3041 |
+
"grad_norm": 0.30313380575685006,
|
3042 |
+
"learning_rate": 5.091571939329049e-07,
|
3043 |
+
"loss": 0.6559,
|
3044 |
+
"step": 429
|
3045 |
+
},
|
3046 |
+
{
|
3047 |
+
"epoch": 1.69,
|
3048 |
+
"grad_norm": 0.2851579977806079,
|
3049 |
+
"learning_rate": 4.951556604879049e-07,
|
3050 |
+
"loss": 0.6862,
|
3051 |
+
"step": 430
|
3052 |
+
},
|
3053 |
+
{
|
3054 |
+
"epoch": 1.7,
|
3055 |
+
"grad_norm": 0.28828722620682673,
|
3056 |
+
"learning_rate": 4.813393035494329e-07,
|
3057 |
+
"loss": 0.673,
|
3058 |
+
"step": 431
|
3059 |
+
},
|
3060 |
+
{
|
3061 |
+
"epoch": 1.7,
|
3062 |
+
"grad_norm": 0.283083619090625,
|
3063 |
+
"learning_rate": 4.677086910538092e-07,
|
3064 |
+
"loss": 0.6477,
|
3065 |
+
"step": 432
|
3066 |
+
},
|
3067 |
+
{
|
3068 |
+
"epoch": 1.71,
|
3069 |
+
"grad_norm": 0.29809618255032516,
|
3070 |
+
"learning_rate": 4.542643833021254e-07,
|
3071 |
+
"loss": 0.7054,
|
3072 |
+
"step": 433
|
3073 |
+
},
|
3074 |
+
{
|
3075 |
+
"epoch": 1.71,
|
3076 |
+
"grad_norm": 0.3086409841744957,
|
3077 |
+
"learning_rate": 4.410069329372152e-07,
|
3078 |
+
"loss": 0.6763,
|
3079 |
+
"step": 434
|
3080 |
+
},
|
3081 |
+
{
|
3082 |
+
"epoch": 1.71,
|
3083 |
+
"grad_norm": 0.3016981542599131,
|
3084 |
+
"learning_rate": 4.279368849209381e-07,
|
3085 |
+
"loss": 0.6843,
|
3086 |
+
"step": 435
|
3087 |
+
},
|
3088 |
+
{
|
3089 |
+
"epoch": 1.72,
|
3090 |
+
"grad_norm": 0.27698126686942587,
|
3091 |
+
"learning_rate": 4.150547765117746e-07,
|
3092 |
+
"loss": 0.6891,
|
3093 |
+
"step": 436
|
3094 |
+
},
|
3095 |
+
{
|
3096 |
+
"epoch": 1.72,
|
3097 |
+
"grad_norm": 0.2793586730481018,
|
3098 |
+
"learning_rate": 4.0236113724274716e-07,
|
3099 |
+
"loss": 0.6796,
|
3100 |
+
"step": 437
|
3101 |
+
},
|
3102 |
+
{
|
3103 |
+
"epoch": 1.73,
|
3104 |
+
"grad_norm": 0.28666974827878056,
|
3105 |
+
"learning_rate": 3.8985648889964755e-07,
|
3106 |
+
"loss": 0.6648,
|
3107 |
+
"step": 438
|
3108 |
+
},
|
3109 |
+
{
|
3110 |
+
"epoch": 1.73,
|
3111 |
+
"grad_norm": 0.28527293041641727,
|
3112 |
+
"learning_rate": 3.77541345499593e-07,
|
3113 |
+
"loss": 0.7071,
|
3114 |
+
"step": 439
|
3115 |
+
},
|
3116 |
+
{
|
3117 |
+
"epoch": 1.73,
|
3118 |
+
"grad_norm": 0.29843069047155474,
|
3119 |
+
"learning_rate": 3.6541621326989183e-07,
|
3120 |
+
"loss": 0.6803,
|
3121 |
+
"step": 440
|
3122 |
+
},
|
3123 |
+
{
|
3124 |
+
"epoch": 1.74,
|
3125 |
+
"grad_norm": 0.3001228333782996,
|
3126 |
+
"learning_rate": 3.534815906272404e-07,
|
3127 |
+
"loss": 0.7176,
|
3128 |
+
"step": 441
|
3129 |
+
},
|
3130 |
+
{
|
3131 |
+
"epoch": 1.74,
|
3132 |
+
"grad_norm": 0.2928174202718284,
|
3133 |
+
"learning_rate": 3.417379681572297e-07,
|
3134 |
+
"loss": 0.6747,
|
3135 |
+
"step": 442
|
3136 |
+
},
|
3137 |
+
{
|
3138 |
+
"epoch": 1.75,
|
3139 |
+
"grad_norm": 0.2951128501223636,
|
3140 |
+
"learning_rate": 3.301858285941845e-07,
|
3141 |
+
"loss": 0.7046,
|
3142 |
+
"step": 443
|
3143 |
+
},
|
3144 |
+
{
|
3145 |
+
"epoch": 1.75,
|
3146 |
+
"grad_norm": 0.2931876464433515,
|
3147 |
+
"learning_rate": 3.18825646801314e-07,
|
3148 |
+
"loss": 0.6734,
|
3149 |
+
"step": 444
|
3150 |
+
},
|
3151 |
+
{
|
3152 |
+
"epoch": 1.75,
|
3153 |
+
"grad_norm": 0.29349560436630445,
|
3154 |
+
"learning_rate": 3.076578897511978e-07,
|
3155 |
+
"loss": 0.6852,
|
3156 |
+
"step": 445
|
3157 |
+
},
|
3158 |
+
{
|
3159 |
+
"epoch": 1.76,
|
3160 |
+
"grad_norm": 0.7457047514934827,
|
3161 |
+
"learning_rate": 2.966830165065876e-07,
|
3162 |
+
"loss": 0.9017,
|
3163 |
+
"step": 446
|
3164 |
+
},
|
3165 |
+
{
|
3166 |
+
"epoch": 1.76,
|
3167 |
+
"grad_norm": 0.2813462622367945,
|
3168 |
+
"learning_rate": 2.8590147820153513e-07,
|
3169 |
+
"loss": 0.6969,
|
3170 |
+
"step": 447
|
3171 |
+
},
|
3172 |
+
{
|
3173 |
+
"epoch": 1.77,
|
3174 |
+
"grad_norm": 0.30904433658187347,
|
3175 |
+
"learning_rate": 2.7531371802285436e-07,
|
3176 |
+
"loss": 0.6829,
|
3177 |
+
"step": 448
|
3178 |
+
},
|
3179 |
+
{
|
3180 |
+
"epoch": 1.77,
|
3181 |
+
"grad_norm": 0.28837856935691286,
|
3182 |
+
"learning_rate": 2.6492017119189415e-07,
|
3183 |
+
"loss": 0.6527,
|
3184 |
+
"step": 449
|
3185 |
+
},
|
3186 |
+
{
|
3187 |
+
"epoch": 1.77,
|
3188 |
+
"grad_norm": 0.2940858357017207,
|
3189 |
+
"learning_rate": 2.547212649466568e-07,
|
3190 |
+
"loss": 0.6696,
|
3191 |
+
"step": 450
|
3192 |
+
},
|
3193 |
+
{
|
3194 |
+
"epoch": 1.78,
|
3195 |
+
"grad_norm": 0.27956534271888384,
|
3196 |
+
"learning_rate": 2.447174185242324e-07,
|
3197 |
+
"loss": 0.7048,
|
3198 |
+
"step": 451
|
3199 |
+
},
|
3200 |
+
{
|
3201 |
+
"epoch": 1.78,
|
3202 |
+
"grad_norm": 0.28259810422391984,
|
3203 |
+
"learning_rate": 2.3490904314356412e-07,
|
3204 |
+
"loss": 0.6772,
|
3205 |
+
"step": 452
|
3206 |
+
},
|
3207 |
+
{
|
3208 |
+
"epoch": 1.79,
|
3209 |
+
"grad_norm": 0.2846763408984384,
|
3210 |
+
"learning_rate": 2.2529654198854834e-07,
|
3211 |
+
"loss": 0.7507,
|
3212 |
+
"step": 453
|
3213 |
+
},
|
3214 |
+
{
|
3215 |
+
"epoch": 1.79,
|
3216 |
+
"grad_norm": 0.2784656918785677,
|
3217 |
+
"learning_rate": 2.1588031019145638e-07,
|
3218 |
+
"loss": 0.7072,
|
3219 |
+
"step": 454
|
3220 |
+
},
|
3221 |
+
{
|
3222 |
+
"epoch": 1.79,
|
3223 |
+
"grad_norm": 0.28593045031546543,
|
3224 |
+
"learning_rate": 2.0666073481669714e-07,
|
3225 |
+
"loss": 0.6944,
|
3226 |
+
"step": 455
|
3227 |
+
},
|
3228 |
+
{
|
3229 |
+
"epoch": 1.8,
|
3230 |
+
"grad_norm": 0.296176705173677,
|
3231 |
+
"learning_rate": 1.9763819484490353e-07,
|
3232 |
+
"loss": 0.6691,
|
3233 |
+
"step": 456
|
3234 |
+
},
|
3235 |
+
{
|
3236 |
+
"epoch": 1.8,
|
3237 |
+
"grad_norm": 0.2923471158891105,
|
3238 |
+
"learning_rate": 1.8881306115735632e-07,
|
3239 |
+
"loss": 0.705,
|
3240 |
+
"step": 457
|
3241 |
+
},
|
3242 |
+
{
|
3243 |
+
"epoch": 1.81,
|
3244 |
+
"grad_norm": 0.2769134760770555,
|
3245 |
+
"learning_rate": 1.801856965207338e-07,
|
3246 |
+
"loss": 0.6845,
|
3247 |
+
"step": 458
|
3248 |
+
},
|
3249 |
+
{
|
3250 |
+
"epoch": 1.81,
|
3251 |
+
"grad_norm": 0.30153347516541434,
|
3252 |
+
"learning_rate": 1.7175645557220567e-07,
|
3253 |
+
"loss": 0.6935,
|
3254 |
+
"step": 459
|
3255 |
+
},
|
3256 |
+
{
|
3257 |
+
"epoch": 1.81,
|
3258 |
+
"grad_norm": 0.29938078931561396,
|
3259 |
+
"learning_rate": 1.6352568480485277e-07,
|
3260 |
+
"loss": 0.6822,
|
3261 |
+
"step": 460
|
3262 |
+
},
|
3263 |
+
{
|
3264 |
+
"epoch": 1.82,
|
3265 |
+
"grad_norm": 0.2909845977727433,
|
3266 |
+
"learning_rate": 1.5549372255342367e-07,
|
3267 |
+
"loss": 0.6959,
|
3268 |
+
"step": 461
|
3269 |
+
},
|
3270 |
+
{
|
3271 |
+
"epoch": 1.82,
|
3272 |
+
"grad_norm": 0.2851155920589762,
|
3273 |
+
"learning_rate": 1.4766089898042678e-07,
|
3274 |
+
"loss": 0.6909,
|
3275 |
+
"step": 462
|
3276 |
+
},
|
3277 |
+
{
|
3278 |
+
"epoch": 1.83,
|
3279 |
+
"grad_norm": 3.590844633307425,
|
3280 |
+
"learning_rate": 1.4002753606256082e-07,
|
3281 |
+
"loss": 0.9279,
|
3282 |
+
"step": 463
|
3283 |
+
},
|
3284 |
+
{
|
3285 |
+
"epoch": 1.83,
|
3286 |
+
"grad_norm": 0.289769942223222,
|
3287 |
+
"learning_rate": 1.3259394757747678e-07,
|
3288 |
+
"loss": 0.6664,
|
3289 |
+
"step": 464
|
3290 |
+
},
|
3291 |
+
{
|
3292 |
+
"epoch": 1.83,
|
3293 |
+
"grad_norm": 1.4756345980091514,
|
3294 |
+
"learning_rate": 1.253604390908819e-07,
|
3295 |
+
"loss": 0.9066,
|
3296 |
+
"step": 465
|
3297 |
+
},
|
3298 |
+
{
|
3299 |
+
"epoch": 1.84,
|
3300 |
+
"grad_norm": 0.2905542054012534,
|
3301 |
+
"learning_rate": 1.1832730794397951e-07,
|
3302 |
+
"loss": 0.6989,
|
3303 |
+
"step": 466
|
3304 |
+
},
|
3305 |
+
{
|
3306 |
+
"epoch": 1.84,
|
3307 |
+
"grad_norm": 0.3056790622208962,
|
3308 |
+
"learning_rate": 1.1149484324124326e-07,
|
3309 |
+
"loss": 0.64,
|
3310 |
+
"step": 467
|
3311 |
+
},
|
3312 |
+
{
|
3313 |
+
"epoch": 1.85,
|
3314 |
+
"grad_norm": 0.2915224050071343,
|
3315 |
+
"learning_rate": 1.0486332583853565e-07,
|
3316 |
+
"loss": 0.6411,
|
3317 |
+
"step": 468
|
3318 |
+
},
|
3319 |
+
{
|
3320 |
+
"epoch": 1.85,
|
3321 |
+
"grad_norm": 0.2947477867782055,
|
3322 |
+
"learning_rate": 9.843302833156377e-08,
|
3323 |
+
"loss": 0.6901,
|
3324 |
+
"step": 469
|
3325 |
+
},
|
3326 |
+
{
|
3327 |
+
"epoch": 1.85,
|
3328 |
+
"grad_norm": 0.6968434274277037,
|
3329 |
+
"learning_rate": 9.22042150446728e-08,
|
3330 |
+
"loss": 0.9234,
|
3331 |
+
"step": 470
|
3332 |
+
},
|
3333 |
+
{
|
3334 |
+
"epoch": 1.86,
|
3335 |
+
"grad_norm": 0.28365980605268926,
|
3336 |
+
"learning_rate": 8.617714201998084e-08,
|
3337 |
+
"loss": 0.6871,
|
3338 |
+
"step": 471
|
3339 |
+
},
|
3340 |
+
{
|
3341 |
+
"epoch": 1.86,
|
3342 |
+
"grad_norm": 0.29456041125148436,
|
3343 |
+
"learning_rate": 8.035205700685167e-08,
|
3344 |
+
"loss": 0.6841,
|
3345 |
+
"step": 472
|
3346 |
+
},
|
3347 |
+
{
|
3348 |
+
"epoch": 1.87,
|
3349 |
+
"grad_norm": 0.3143240746562965,
|
3350 |
+
"learning_rate": 7.47291994517163e-08,
|
3351 |
+
"loss": 0.6793,
|
3352 |
+
"step": 473
|
3353 |
+
},
|
3354 |
+
{
|
3355 |
+
"epoch": 1.87,
|
3356 |
+
"grad_norm": 0.3002190997085016,
|
3357 |
+
"learning_rate": 6.930880048822531e-08,
|
3358 |
+
"loss": 0.6909,
|
3359 |
+
"step": 474
|
3360 |
+
},
|
3361 |
+
{
|
3362 |
+
"epoch": 1.87,
|
3363 |
+
"grad_norm": 0.28198233683666907,
|
3364 |
+
"learning_rate": 6.409108292774912e-08,
|
3365 |
+
"loss": 0.6677,
|
3366 |
+
"step": 475
|
3367 |
+
},
|
3368 |
+
{
|
3369 |
+
"epoch": 1.88,
|
3370 |
+
"grad_norm": 0.2974351663902672,
|
3371 |
+
"learning_rate": 5.907626125022159e-08,
|
3372 |
+
"loss": 0.6863,
|
3373 |
+
"step": 476
|
3374 |
+
},
|
3375 |
+
{
|
3376 |
+
"epoch": 1.88,
|
3377 |
+
"grad_norm": 0.3167342201027022,
|
3378 |
+
"learning_rate": 5.426454159531913e-08,
|
3379 |
+
"loss": 0.6728,
|
3380 |
+
"step": 477
|
3381 |
+
},
|
3382 |
+
{
|
3383 |
+
"epoch": 1.89,
|
3384 |
+
"grad_norm": 0.2838121481556639,
|
3385 |
+
"learning_rate": 4.9656121753990924e-08,
|
3386 |
+
"loss": 0.6765,
|
3387 |
+
"step": 478
|
3388 |
+
},
|
3389 |
+
{
|
3390 |
+
"epoch": 1.89,
|
3391 |
+
"grad_norm": 0.28117138518414553,
|
3392 |
+
"learning_rate": 4.52511911603265e-08,
|
3393 |
+
"loss": 0.6827,
|
3394 |
+
"step": 479
|
3395 |
+
},
|
3396 |
+
{
|
3397 |
+
"epoch": 1.89,
|
3398 |
+
"grad_norm": 0.29399576903346636,
|
3399 |
+
"learning_rate": 4.104993088376974e-08,
|
3400 |
+
"loss": 0.6933,
|
3401 |
+
"step": 480
|
3402 |
+
},
|
3403 |
+
{
|
3404 |
+
"epoch": 1.9,
|
3405 |
+
"grad_norm": 0.29636385882946953,
|
3406 |
+
"learning_rate": 3.705251362167484e-08,
|
3407 |
+
"loss": 0.6641,
|
3408 |
+
"step": 481
|
3409 |
+
},
|
3410 |
+
{
|
3411 |
+
"epoch": 1.9,
|
3412 |
+
"grad_norm": 0.2913085312105263,
|
3413 |
+
"learning_rate": 3.325910369220975e-08,
|
3414 |
+
"loss": 0.6973,
|
3415 |
+
"step": 482
|
3416 |
+
},
|
3417 |
+
{
|
3418 |
+
"epoch": 1.91,
|
3419 |
+
"grad_norm": 0.29080057862930364,
|
3420 |
+
"learning_rate": 2.966985702759828e-08,
|
3421 |
+
"loss": 0.6678,
|
3422 |
+
"step": 483
|
3423 |
+
},
|
3424 |
+
{
|
3425 |
+
"epoch": 1.91,
|
3426 |
+
"grad_norm": 0.2952306166117519,
|
3427 |
+
"learning_rate": 2.6284921167712975e-08,
|
3428 |
+
"loss": 0.7017,
|
3429 |
+
"step": 484
|
3430 |
+
},
|
3431 |
+
{
|
3432 |
+
"epoch": 1.91,
|
3433 |
+
"grad_norm": 0.2959396595629797,
|
3434 |
+
"learning_rate": 2.3104435254008852e-08,
|
3435 |
+
"loss": 0.6569,
|
3436 |
+
"step": 485
|
3437 |
+
},
|
3438 |
+
{
|
3439 |
+
"epoch": 1.92,
|
3440 |
+
"grad_norm": 0.28791733733513286,
|
3441 |
+
"learning_rate": 2.012853002380466e-08,
|
3442 |
+
"loss": 0.6573,
|
3443 |
+
"step": 486
|
3444 |
+
},
|
3445 |
+
{
|
3446 |
+
"epoch": 1.92,
|
3447 |
+
"grad_norm": 0.2923526176448832,
|
3448 |
+
"learning_rate": 1.735732780490884e-08,
|
3449 |
+
"loss": 0.6903,
|
3450 |
+
"step": 487
|
3451 |
+
},
|
3452 |
+
{
|
3453 |
+
"epoch": 1.93,
|
3454 |
+
"grad_norm": 0.2908268098513957,
|
3455 |
+
"learning_rate": 1.4790942510590767e-08,
|
3456 |
+
"loss": 0.6756,
|
3457 |
+
"step": 488
|
3458 |
+
},
|
3459 |
+
{
|
3460 |
+
"epoch": 1.93,
|
3461 |
+
"grad_norm": 0.29069043095745606,
|
3462 |
+
"learning_rate": 1.2429479634897268e-08,
|
3463 |
+
"loss": 0.6722,
|
3464 |
+
"step": 489
|
3465 |
+
},
|
3466 |
+
{
|
3467 |
+
"epoch": 1.93,
|
3468 |
+
"grad_norm": 0.28912174671892155,
|
3469 |
+
"learning_rate": 1.0273036248318325e-08,
|
3470 |
+
"loss": 0.6927,
|
3471 |
+
"step": 490
|
3472 |
+
},
|
3473 |
+
{
|
3474 |
+
"epoch": 1.94,
|
3475 |
+
"grad_norm": 0.29773909318477504,
|
3476 |
+
"learning_rate": 8.321700993795812e-09,
|
3477 |
+
"loss": 0.6703,
|
3478 |
+
"step": 491
|
3479 |
+
},
|
3480 |
+
{
|
3481 |
+
"epoch": 1.94,
|
3482 |
+
"grad_norm": 0.2846360921300275,
|
3483 |
+
"learning_rate": 6.575554083078084e-09,
|
3484 |
+
"loss": 0.6915,
|
3485 |
+
"step": 492
|
3486 |
+
},
|
3487 |
+
{
|
3488 |
+
"epoch": 1.95,
|
3489 |
+
"grad_norm": 0.3040183654289367,
|
3490 |
+
"learning_rate": 5.034667293427053e-09,
|
3491 |
+
"loss": 0.6836,
|
3492 |
+
"step": 493
|
3493 |
+
},
|
3494 |
+
{
|
3495 |
+
"epoch": 1.95,
|
3496 |
+
"grad_norm": 0.29012455377167307,
|
3497 |
+
"learning_rate": 3.6991039646616657e-09,
|
3498 |
+
"loss": 0.6844,
|
3499 |
+
"step": 494
|
3500 |
+
},
|
3501 |
+
{
|
3502 |
+
"epoch": 1.95,
|
3503 |
+
"grad_norm": 0.2778518633390048,
|
3504 |
+
"learning_rate": 2.568918996560532e-09,
|
3505 |
+
"loss": 0.6779,
|
3506 |
+
"step": 495
|
3507 |
+
},
|
3508 |
+
{
|
3509 |
+
"epoch": 1.96,
|
3510 |
+
"grad_norm": 0.29541155663074187,
|
3511 |
+
"learning_rate": 1.6441588466009627e-09,
|
3512 |
+
"loss": 0.6979,
|
3513 |
+
"step": 496
|
3514 |
+
},
|
3515 |
+
{
|
3516 |
+
"epoch": 1.96,
|
3517 |
+
"grad_norm": 0.28364315270086676,
|
3518 |
+
"learning_rate": 9.248615280499362e-10,
|
3519 |
+
"loss": 0.6792,
|
3520 |
+
"step": 497
|
3521 |
+
},
|
3522 |
+
{
|
3523 |
+
"epoch": 1.97,
|
3524 |
+
"grad_norm": 0.2865142006406564,
|
3525 |
+
"learning_rate": 4.1105660840368154e-10,
|
3526 |
+
"loss": 0.7034,
|
3527 |
+
"step": 498
|
3528 |
+
},
|
3529 |
+
{
|
3530 |
+
"epoch": 1.97,
|
3531 |
+
"grad_norm": 0.2854424675916699,
|
3532 |
+
"learning_rate": 1.0276520816976388e-10,
|
3533 |
+
"loss": 0.6747,
|
3534 |
+
"step": 499
|
3535 |
+
},
|
3536 |
+
{
|
3537 |
+
"epoch": 1.97,
|
3538 |
+
"grad_norm": 0.29666466368391803,
|
3539 |
+
"learning_rate": 0.0,
|
3540 |
+
"loss": 0.6754,
|
3541 |
+
"step": 500
|
3542 |
+
},
|
3543 |
+
{
|
3544 |
+
"epoch": 1.97,
|
3545 |
+
"eval_loss": 0.6983408331871033,
|
3546 |
+
"eval_runtime": 93.907,
|
3547 |
+
"eval_samples_per_second": 18.827,
|
3548 |
+
"eval_steps_per_second": 0.394,
|
3549 |
+
"step": 500
|
3550 |
+
}
|
3551 |
+
],
|
3552 |
+
"logging_steps": 1,
|
3553 |
+
"max_steps": 500,
|
3554 |
+
"num_input_tokens_seen": 0,
|
3555 |
+
"num_train_epochs": 2,
|
3556 |
+
"save_steps": 250,
|
3557 |
+
"total_flos": 1571976955035648.0,
|
3558 |
+
"train_batch_size": 6,
|
3559 |
+
"trial_name": null,
|
3560 |
+
"trial_params": null
|
3561 |
+
}
|
checkpoint-500/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:65ef0124c2666d0d78b18fb6fcae7801286925d17b161abe928ae1b45915ae68
|
3 |
+
size 7736
|
checkpoint-500/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-500/zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "meta-llama/Meta-Llama-3-8B",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 128000,
|
9 |
+
"eos_token_id": 128256,
|
10 |
+
"hidden_act": "silu",
|
11 |
+
"hidden_size": 4096,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 14336,
|
14 |
+
"max_position_embeddings": 8192,
|
15 |
+
"model_type": "llama",
|
16 |
+
"num_attention_heads": 32,
|
17 |
+
"num_hidden_layers": 32,
|
18 |
+
"num_key_value_heads": 8,
|
19 |
+
"pretraining_tp": 1,
|
20 |
+
"rms_norm_eps": 1e-05,
|
21 |
+
"rope_scaling": null,
|
22 |
+
"rope_theta": 500000.0,
|
23 |
+
"tie_word_embeddings": false,
|
24 |
+
"torch_dtype": "bfloat16",
|
25 |
+
"transformers_version": "4.40.0.dev0",
|
26 |
+
"use_cache": false,
|
27 |
+
"vocab_size": 128258
|
28 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": 151643,
|
5 |
+
"max_new_tokens": 2048,
|
6 |
+
"transformers_version": "4.40.0.dev0"
|
7 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f421710e83034813f0366192f32dd36a6005990365885d2b7b3fad1f95ee71a1
|
3 |
+
size 4877660776
|
model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:90ee3add1c94133fccf2b4c5a11fdea6167e7de07c2f58f1cbfc8e7da0844518
|
3 |
+
size 4932751008
|
model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:61e3e7d2c4b53ec95c1ad1e8a2c2770709a5ab20cb556486922f3722569615e8
|
3 |
+
size 4330865200
|