Weyaxi commited on
Commit
46ccb49
·
verified ·
1 Parent(s): 5ef2bb4

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. checkpoint-272/config.json +26 -0
  2. checkpoint-272/generation_config.json +7 -0
  3. checkpoint-272/global_step272/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  4. checkpoint-272/global_step272/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  5. checkpoint-272/global_step272/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  6. checkpoint-272/global_step272/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  7. checkpoint-272/global_step272/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
  8. checkpoint-272/global_step272/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
  9. checkpoint-272/global_step272/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
  10. checkpoint-272/global_step272/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
  11. checkpoint-272/global_step272/bf16_zero_pp_rank_8_mp_rank_00_optim_states.pt +3 -0
  12. checkpoint-272/global_step272/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
  13. checkpoint-272/global_step272/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
  14. checkpoint-272/global_step272/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
  15. checkpoint-272/global_step272/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
  16. checkpoint-272/global_step272/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
  17. checkpoint-272/global_step272/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
  18. checkpoint-272/global_step272/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
  19. checkpoint-272/global_step272/zero_pp_rank_7_mp_rank_00_model_states.pt +3 -0
  20. checkpoint-272/global_step272/zero_pp_rank_8_mp_rank_00_model_states.pt +3 -0
  21. checkpoint-272/latest +1 -0
  22. checkpoint-272/model-00001-of-00003.safetensors +3 -0
  23. checkpoint-272/model-00002-of-00003.safetensors +3 -0
  24. checkpoint-272/model-00003-of-00003.safetensors +3 -0
  25. checkpoint-272/model.safetensors.index.json +298 -0
  26. checkpoint-272/rng_state_0.pth +3 -0
  27. checkpoint-272/rng_state_1.pth +3 -0
  28. checkpoint-272/rng_state_2.pth +3 -0
  29. checkpoint-272/rng_state_3.pth +3 -0
  30. checkpoint-272/rng_state_4.pth +3 -0
  31. checkpoint-272/rng_state_5.pth +3 -0
  32. checkpoint-272/rng_state_6.pth +3 -0
  33. checkpoint-272/rng_state_7.pth +3 -0
  34. checkpoint-272/rng_state_8.pth +3 -0
  35. checkpoint-272/scheduler.pt +3 -0
  36. checkpoint-272/trainer_state.json +1965 -0
  37. checkpoint-272/training_args.bin +3 -0
  38. checkpoint-272/zero_to_fp32.py +592 -0
  39. checkpoint-544/config.json +26 -0
  40. checkpoint-544/generation_config.json +7 -0
  41. checkpoint-544/global_step544/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  42. checkpoint-544/global_step544/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  43. checkpoint-544/global_step544/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  44. checkpoint-544/global_step544/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  45. checkpoint-544/global_step544/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
  46. checkpoint-544/global_step544/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
  47. checkpoint-544/global_step544/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
  48. checkpoint-544/global_step544/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
  49. checkpoint-544/global_step544/bf16_zero_pp_rank_8_mp_rank_00_optim_states.pt +3 -0
  50. checkpoint-544/global_step544/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
checkpoint-272/config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "meta-math/MetaMath-Mistral-7B",
3
+ "architectures": [
4
+ "MistralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 14336,
13
+ "max_position_embeddings": 32768,
14
+ "model_type": "mistral",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 32,
17
+ "num_key_value_heads": 8,
18
+ "rms_norm_eps": 1e-05,
19
+ "rope_theta": 10000.0,
20
+ "sliding_window": 4096,
21
+ "tie_word_embeddings": false,
22
+ "torch_dtype": "bfloat16",
23
+ "transformers_version": "4.38.2",
24
+ "use_cache": false,
25
+ "vocab_size": 32001
26
+ }
checkpoint-272/generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "do_sample": true,
5
+ "eos_token_id": 2,
6
+ "transformers_version": "4.38.2"
7
+ }
checkpoint-272/global_step272/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e31849038fa9cd4678f9b66e0fd5c35fc041a94b8b208c80fd609d43b0126a0
3
+ size 4831618059
checkpoint-272/global_step272/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf6fa0ee61cc028e89dd431ca628d68f10a1f95a7ff5ed098166ecc8f6d8c1f7
3
+ size 4831618059
checkpoint-272/global_step272/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac6663dd6e69cfb0a3eea1233a785100ecbe6a9f90463a7f4d8fc505fdbbce3b
3
+ size 4831618059
checkpoint-272/global_step272/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4112230565592bb524050869c6efe110642e4ed541727329587ea0adb1f119e
3
+ size 4831618059
checkpoint-272/global_step272/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f062872fdddf3358ba89f0e2c081d0665fe65398f61e674b2bb8ff363748c302
3
+ size 4831618059
checkpoint-272/global_step272/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55c346ffddb70182661cdf51a8bc119e315e3aed15d66d7130adfb1f268320ae
3
+ size 4831618059
checkpoint-272/global_step272/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8376e6c211faf63973ea5506550505a6e4ab80119df71bce7c81e8301a07331b
3
+ size 4831618059
checkpoint-272/global_step272/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f090e3cda29d6cdd54eb5b30634166223f1f2036143772c25b6456a05bfce39
3
+ size 4831618059
checkpoint-272/global_step272/bf16_zero_pp_rank_8_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e92caf0a4a936c842a455a9a7dfb1f8b5f82f5adaa1b3c327e8da76f5ac5ad70
3
+ size 4831618059
checkpoint-272/global_step272/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:280bfa97e4d83b87d6b6e0bd40e16e960075c0f7cc87d31a7841a3ee3639f30a
3
+ size 153829
checkpoint-272/global_step272/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e8cb4abe6afe1bd7dba3a8b7485c585f50fdb8f2f6c91c8d63f094c6048859c
3
+ size 153829
checkpoint-272/global_step272/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d52d693fc7723ad49cc2f0672dc16bb568676ee6305230603aa5e256824d6e6
3
+ size 153829
checkpoint-272/global_step272/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:327184ae8ca4973115be4df9d8909ab4309b4c7d5786289ef8b4c20fd2fb41b7
3
+ size 153829
checkpoint-272/global_step272/zero_pp_rank_4_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65f34e4df94e1fe86860c5ad6f589b08b34935929479a9b75cf4567ec42986a5
3
+ size 153829
checkpoint-272/global_step272/zero_pp_rank_5_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab500a98d6713dc68032e36a46e64cecdc6539c9a62b6b61040628613f0f81e8
3
+ size 153829
checkpoint-272/global_step272/zero_pp_rank_6_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d5a4e70c3f97c371795ec0366e88e65ccd7799ec2152fe13ddfd24fdc027ab0
3
+ size 153829
checkpoint-272/global_step272/zero_pp_rank_7_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9df33f762b6e113595c5d0bf3d434930fa902b91a8a8eaa7fb0e94bef7670fd
3
+ size 153829
checkpoint-272/global_step272/zero_pp_rank_8_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21bf5d06b3a94429b3b6c0c6acfce9e344c07b8bf1311da209791490c130b1c4
3
+ size 153829
checkpoint-272/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step272
checkpoint-272/model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb7ddd132c950151879ee704033773a1c08f22fedfbe2459a71cf1304378ddad
3
+ size 4943170528
checkpoint-272/model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:254fae62a9850c1250d558ce0c0a152cbf3843311738cf4ef96d0b9eb71c8ba0
3
+ size 4999819336
checkpoint-272/model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5b4497b7b6358ed1de5f189caf947738698ebcf00c3dec230c973c0552e5d86
3
+ size 4540524536
checkpoint-272/model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 14483480576
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00003-of-00003.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00003.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00003.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
296
+ "model.norm.weight": "model-00003-of-00003.safetensors"
297
+ }
298
+ }
checkpoint-272/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e37b5dbacf124b1514a121af5a0ce2c5a8e77be83bf19ae649a665a468082d28
3
+ size 16240
checkpoint-272/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cef1e45867cf45a884341d3d1df4a7485b45b65e7ef081206135e62bcccb42f5
3
+ size 16240
checkpoint-272/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4c6bfccb1c88b7ba35a635a24b890be2e0af719772c1d99cd0a5ba42ef608ec
3
+ size 16240
checkpoint-272/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7430906032884979d0dae96997913bf4abe89d78b37987bb6dfdce3fed39b2a9
3
+ size 16240
checkpoint-272/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d01f98d61eec8827743e7fec29e83ca6ecdd540e8d277817dce7fc06a97b258
3
+ size 16240
checkpoint-272/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:794f06b07218837f68fb7b5fe84665c13dc6a5180f685b6d8e6b4365ee8470bf
3
+ size 16240
checkpoint-272/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:406f4ad8fafa642cbfe4d8b4fd81a4a4c339ce8fed12fd4ced0b9ccd483ad18f
3
+ size 16240
checkpoint-272/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa49f77dfa366a04d42761a422f906b99bb3991a7119ec4d497a4cd6a129c4e4
3
+ size 16240
checkpoint-272/rng_state_8.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:52aeb24997fb0b3fdd2c038ceb9e0a217724db63ac5cb47bb06bab9354d5be3c
3
+ size 16240
checkpoint-272/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f321f2f0ea6e36dc3550ed5e4455f04e5d7636ce96621025506fa529386c2b11
3
+ size 1064
checkpoint-272/trainer_state.json ADDED
@@ -0,0 +1,1965 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.22680288553237915,
3
+ "best_model_checkpoint": "./EulerMath-Mistral-7B-model/checkpoint-272",
4
+ "epoch": 0.9990817263544536,
5
+ "eval_steps": 68,
6
+ "global_step": 272,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "grad_norm": 19.19068191513093,
14
+ "learning_rate": 5.000000000000001e-07,
15
+ "loss": 0.707,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0,
20
+ "eval_loss": 0.9060535430908203,
21
+ "eval_runtime": 1745.9683,
22
+ "eval_samples_per_second": 1.324,
23
+ "eval_steps_per_second": 0.074,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.01,
28
+ "grad_norm": 20.035932532601844,
29
+ "learning_rate": 1.0000000000000002e-06,
30
+ "loss": 0.7236,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.01,
35
+ "grad_norm": 19.31513317860667,
36
+ "learning_rate": 1.5e-06,
37
+ "loss": 0.7201,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.01,
42
+ "grad_norm": 16.561326930760348,
43
+ "learning_rate": 2.0000000000000003e-06,
44
+ "loss": 0.6717,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.02,
49
+ "grad_norm": 9.069275733221579,
50
+ "learning_rate": 2.5e-06,
51
+ "loss": 0.573,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.02,
56
+ "grad_norm": 6.0702110208300475,
57
+ "learning_rate": 3e-06,
58
+ "loss": 0.4965,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.03,
63
+ "grad_norm": 6.5389430446896055,
64
+ "learning_rate": 3.5e-06,
65
+ "loss": 0.5093,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.03,
70
+ "grad_norm": 7.709934958779789,
71
+ "learning_rate": 4.000000000000001e-06,
72
+ "loss": 0.524,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.03,
77
+ "grad_norm": 6.1640217934257135,
78
+ "learning_rate": 4.5e-06,
79
+ "loss": 0.503,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.04,
84
+ "grad_norm": 4.079182690080823,
85
+ "learning_rate": 5e-06,
86
+ "loss": 0.4787,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.04,
91
+ "grad_norm": 4.269731620276111,
92
+ "learning_rate": 4.999956736067563e-06,
93
+ "loss": 0.4545,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.04,
98
+ "grad_norm": 4.059214670786909,
99
+ "learning_rate": 4.999826945767665e-06,
100
+ "loss": 0.4638,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.05,
105
+ "grad_norm": 3.583247385116129,
106
+ "learning_rate": 4.9996106335924965e-06,
107
+ "loss": 0.4396,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.05,
112
+ "grad_norm": 3.2077663599892405,
113
+ "learning_rate": 4.999307807028872e-06,
114
+ "loss": 0.4287,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.06,
119
+ "grad_norm": 2.3678816023894513,
120
+ "learning_rate": 4.998918476557964e-06,
121
+ "loss": 0.4169,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.06,
126
+ "grad_norm": 1.9925263681909064,
127
+ "learning_rate": 4.998442655654946e-06,
128
+ "loss": 0.4099,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.06,
133
+ "grad_norm": 1.7706573910428134,
134
+ "learning_rate": 4.997880360788527e-06,
135
+ "loss": 0.4003,
136
+ "step": 17
137
+ },
138
+ {
139
+ "epoch": 0.07,
140
+ "grad_norm": 1.6789390301868525,
141
+ "learning_rate": 4.997231611420374e-06,
142
+ "loss": 0.399,
143
+ "step": 18
144
+ },
145
+ {
146
+ "epoch": 0.07,
147
+ "grad_norm": 1.5622054221426698,
148
+ "learning_rate": 4.996496430004446e-06,
149
+ "loss": 0.3885,
150
+ "step": 19
151
+ },
152
+ {
153
+ "epoch": 0.07,
154
+ "grad_norm": 1.5663787846468284,
155
+ "learning_rate": 4.995674841986217e-06,
156
+ "loss": 0.3987,
157
+ "step": 20
158
+ },
159
+ {
160
+ "epoch": 0.08,
161
+ "grad_norm": 1.4502330087611721,
162
+ "learning_rate": 4.994766875801789e-06,
163
+ "loss": 0.3962,
164
+ "step": 21
165
+ },
166
+ {
167
+ "epoch": 0.08,
168
+ "grad_norm": 1.4188997099391882,
169
+ "learning_rate": 4.993772562876909e-06,
170
+ "loss": 0.3845,
171
+ "step": 22
172
+ },
173
+ {
174
+ "epoch": 0.08,
175
+ "grad_norm": 1.4360806887465898,
176
+ "learning_rate": 4.992691937625892e-06,
177
+ "loss": 0.3764,
178
+ "step": 23
179
+ },
180
+ {
181
+ "epoch": 0.09,
182
+ "grad_norm": 1.4216582090099372,
183
+ "learning_rate": 4.991525037450412e-06,
184
+ "loss": 0.3712,
185
+ "step": 24
186
+ },
187
+ {
188
+ "epoch": 0.09,
189
+ "grad_norm": 1.2856499279799387,
190
+ "learning_rate": 4.990271902738223e-06,
191
+ "loss": 0.3603,
192
+ "step": 25
193
+ },
194
+ {
195
+ "epoch": 0.1,
196
+ "grad_norm": 1.247117404577534,
197
+ "learning_rate": 4.988932576861754e-06,
198
+ "loss": 0.3652,
199
+ "step": 26
200
+ },
201
+ {
202
+ "epoch": 0.1,
203
+ "grad_norm": 1.3197850379000642,
204
+ "learning_rate": 4.987507106176606e-06,
205
+ "loss": 0.371,
206
+ "step": 27
207
+ },
208
+ {
209
+ "epoch": 0.1,
210
+ "grad_norm": 1.243400495941476,
211
+ "learning_rate": 4.985995540019956e-06,
212
+ "loss": 0.3599,
213
+ "step": 28
214
+ },
215
+ {
216
+ "epoch": 0.11,
217
+ "grad_norm": 1.3278566257982103,
218
+ "learning_rate": 4.984397930708838e-06,
219
+ "loss": 0.3594,
220
+ "step": 29
221
+ },
222
+ {
223
+ "epoch": 0.11,
224
+ "grad_norm": 1.337022527470652,
225
+ "learning_rate": 4.982714333538344e-06,
226
+ "loss": 0.3477,
227
+ "step": 30
228
+ },
229
+ {
230
+ "epoch": 0.11,
231
+ "grad_norm": 1.2099362672151601,
232
+ "learning_rate": 4.980944806779698e-06,
233
+ "loss": 0.3425,
234
+ "step": 31
235
+ },
236
+ {
237
+ "epoch": 0.12,
238
+ "grad_norm": 1.2110593150023343,
239
+ "learning_rate": 4.979089411678252e-06,
240
+ "loss": 0.3567,
241
+ "step": 32
242
+ },
243
+ {
244
+ "epoch": 0.12,
245
+ "grad_norm": 1.2334965596913852,
246
+ "learning_rate": 4.977148212451354e-06,
247
+ "loss": 0.3526,
248
+ "step": 33
249
+ },
250
+ {
251
+ "epoch": 0.12,
252
+ "grad_norm": 1.1687161424016368,
253
+ "learning_rate": 4.975121276286136e-06,
254
+ "loss": 0.3496,
255
+ "step": 34
256
+ },
257
+ {
258
+ "epoch": 0.13,
259
+ "grad_norm": 1.1881954676378432,
260
+ "learning_rate": 4.973008673337181e-06,
261
+ "loss": 0.3321,
262
+ "step": 35
263
+ },
264
+ {
265
+ "epoch": 0.13,
266
+ "grad_norm": 1.2174270605971114,
267
+ "learning_rate": 4.970810476724097e-06,
268
+ "loss": 0.3446,
269
+ "step": 36
270
+ },
271
+ {
272
+ "epoch": 0.14,
273
+ "grad_norm": 1.1609330509652702,
274
+ "learning_rate": 4.968526762528988e-06,
275
+ "loss": 0.341,
276
+ "step": 37
277
+ },
278
+ {
279
+ "epoch": 0.14,
280
+ "grad_norm": 1.2149352568793006,
281
+ "learning_rate": 4.9661576097938205e-06,
282
+ "loss": 0.3459,
283
+ "step": 38
284
+ },
285
+ {
286
+ "epoch": 0.14,
287
+ "grad_norm": 1.1885081900677397,
288
+ "learning_rate": 4.963703100517684e-06,
289
+ "loss": 0.3425,
290
+ "step": 39
291
+ },
292
+ {
293
+ "epoch": 0.15,
294
+ "grad_norm": 1.113235885075549,
295
+ "learning_rate": 4.961163319653959e-06,
296
+ "loss": 0.339,
297
+ "step": 40
298
+ },
299
+ {
300
+ "epoch": 0.15,
301
+ "grad_norm": 1.0983562726057154,
302
+ "learning_rate": 4.958538355107369e-06,
303
+ "loss": 0.3298,
304
+ "step": 41
305
+ },
306
+ {
307
+ "epoch": 0.15,
308
+ "grad_norm": 1.1594289217865181,
309
+ "learning_rate": 4.955828297730949e-06,
310
+ "loss": 0.3187,
311
+ "step": 42
312
+ },
313
+ {
314
+ "epoch": 0.16,
315
+ "grad_norm": 1.1714548911644644,
316
+ "learning_rate": 4.953033241322887e-06,
317
+ "loss": 0.3373,
318
+ "step": 43
319
+ },
320
+ {
321
+ "epoch": 0.16,
322
+ "grad_norm": 1.1450397323165031,
323
+ "learning_rate": 4.950153282623289e-06,
324
+ "loss": 0.3232,
325
+ "step": 44
326
+ },
327
+ {
328
+ "epoch": 0.17,
329
+ "grad_norm": 1.1526363934692334,
330
+ "learning_rate": 4.947188521310827e-06,
331
+ "loss": 0.3243,
332
+ "step": 45
333
+ },
334
+ {
335
+ "epoch": 0.17,
336
+ "grad_norm": 1.2175235837438554,
337
+ "learning_rate": 4.944139059999286e-06,
338
+ "loss": 0.3252,
339
+ "step": 46
340
+ },
341
+ {
342
+ "epoch": 0.17,
343
+ "grad_norm": 1.099789045296574,
344
+ "learning_rate": 4.941005004234019e-06,
345
+ "loss": 0.3178,
346
+ "step": 47
347
+ },
348
+ {
349
+ "epoch": 0.18,
350
+ "grad_norm": 1.2219677196886505,
351
+ "learning_rate": 4.937786462488284e-06,
352
+ "loss": 0.3185,
353
+ "step": 48
354
+ },
355
+ {
356
+ "epoch": 0.18,
357
+ "grad_norm": 1.1806399387287625,
358
+ "learning_rate": 4.9344835461595016e-06,
359
+ "loss": 0.3131,
360
+ "step": 49
361
+ },
362
+ {
363
+ "epoch": 0.18,
364
+ "grad_norm": 1.1320527868188186,
365
+ "learning_rate": 4.93109636956539e-06,
366
+ "loss": 0.3198,
367
+ "step": 50
368
+ },
369
+ {
370
+ "epoch": 0.19,
371
+ "grad_norm": 1.2551253674231917,
372
+ "learning_rate": 4.927625049940013e-06,
373
+ "loss": 0.3063,
374
+ "step": 51
375
+ },
376
+ {
377
+ "epoch": 0.19,
378
+ "grad_norm": 1.1131050315591549,
379
+ "learning_rate": 4.9240697074297205e-06,
380
+ "loss": 0.3192,
381
+ "step": 52
382
+ },
383
+ {
384
+ "epoch": 0.19,
385
+ "grad_norm": 1.218025833644298,
386
+ "learning_rate": 4.920430465088992e-06,
387
+ "loss": 0.3083,
388
+ "step": 53
389
+ },
390
+ {
391
+ "epoch": 0.2,
392
+ "grad_norm": 1.090531576651011,
393
+ "learning_rate": 4.916707448876173e-06,
394
+ "loss": 0.3076,
395
+ "step": 54
396
+ },
397
+ {
398
+ "epoch": 0.2,
399
+ "grad_norm": 1.1865422414756877,
400
+ "learning_rate": 4.912900787649124e-06,
401
+ "loss": 0.3155,
402
+ "step": 55
403
+ },
404
+ {
405
+ "epoch": 0.21,
406
+ "grad_norm": 1.1236405558973956,
407
+ "learning_rate": 4.909010613160751e-06,
408
+ "loss": 0.306,
409
+ "step": 56
410
+ },
411
+ {
412
+ "epoch": 0.21,
413
+ "grad_norm": 1.222805799933775,
414
+ "learning_rate": 4.90503706005445e-06,
415
+ "loss": 0.3054,
416
+ "step": 57
417
+ },
418
+ {
419
+ "epoch": 0.21,
420
+ "grad_norm": 1.179814726076065,
421
+ "learning_rate": 4.900980265859449e-06,
422
+ "loss": 0.309,
423
+ "step": 58
424
+ },
425
+ {
426
+ "epoch": 0.22,
427
+ "grad_norm": 1.155763655177263,
428
+ "learning_rate": 4.896840370986042e-06,
429
+ "loss": 0.2974,
430
+ "step": 59
431
+ },
432
+ {
433
+ "epoch": 0.22,
434
+ "grad_norm": 1.1687171308842221,
435
+ "learning_rate": 4.892617518720737e-06,
436
+ "loss": 0.3018,
437
+ "step": 60
438
+ },
439
+ {
440
+ "epoch": 0.22,
441
+ "grad_norm": 1.2240587320323661,
442
+ "learning_rate": 4.88831185522129e-06,
443
+ "loss": 0.3066,
444
+ "step": 61
445
+ },
446
+ {
447
+ "epoch": 0.23,
448
+ "grad_norm": 1.1042960875500205,
449
+ "learning_rate": 4.883923529511646e-06,
450
+ "loss": 0.2977,
451
+ "step": 62
452
+ },
453
+ {
454
+ "epoch": 0.23,
455
+ "grad_norm": 1.1885949614868223,
456
+ "learning_rate": 4.87945269347679e-06,
457
+ "loss": 0.3087,
458
+ "step": 63
459
+ },
460
+ {
461
+ "epoch": 0.24,
462
+ "grad_norm": 1.1420656757477574,
463
+ "learning_rate": 4.874899501857477e-06,
464
+ "loss": 0.2904,
465
+ "step": 64
466
+ },
467
+ {
468
+ "epoch": 0.24,
469
+ "grad_norm": 1.1453980260713446,
470
+ "learning_rate": 4.87026411224489e-06,
471
+ "loss": 0.306,
472
+ "step": 65
473
+ },
474
+ {
475
+ "epoch": 0.24,
476
+ "grad_norm": 1.2729287210416769,
477
+ "learning_rate": 4.865546685075174e-06,
478
+ "loss": 0.2938,
479
+ "step": 66
480
+ },
481
+ {
482
+ "epoch": 0.25,
483
+ "grad_norm": 1.2052792222072466,
484
+ "learning_rate": 4.860747383623889e-06,
485
+ "loss": 0.2977,
486
+ "step": 67
487
+ },
488
+ {
489
+ "epoch": 0.25,
490
+ "grad_norm": 1.2657508580603682,
491
+ "learning_rate": 4.85586637400036e-06,
492
+ "loss": 0.3011,
493
+ "step": 68
494
+ },
495
+ {
496
+ "epoch": 0.25,
497
+ "eval_loss": 0.32630813121795654,
498
+ "eval_runtime": 1744.5857,
499
+ "eval_samples_per_second": 1.325,
500
+ "eval_steps_per_second": 0.074,
501
+ "step": 68
502
+ },
503
+ {
504
+ "epoch": 0.25,
505
+ "grad_norm": 1.1832834131492187,
506
+ "learning_rate": 4.85090382514192e-06,
507
+ "loss": 0.2972,
508
+ "step": 69
509
+ },
510
+ {
511
+ "epoch": 0.26,
512
+ "grad_norm": 1.255475532117491,
513
+ "learning_rate": 4.845859908808074e-06,
514
+ "loss": 0.302,
515
+ "step": 70
516
+ },
517
+ {
518
+ "epoch": 0.26,
519
+ "grad_norm": 1.298818409489401,
520
+ "learning_rate": 4.8407347995745465e-06,
521
+ "loss": 0.2935,
522
+ "step": 71
523
+ },
524
+ {
525
+ "epoch": 0.26,
526
+ "grad_norm": 1.3499885398461409,
527
+ "learning_rate": 4.8355286748272405e-06,
528
+ "loss": 0.295,
529
+ "step": 72
530
+ },
531
+ {
532
+ "epoch": 0.27,
533
+ "grad_norm": 1.3446382549398914,
534
+ "learning_rate": 4.830241714756099e-06,
535
+ "loss": 0.2824,
536
+ "step": 73
537
+ },
538
+ {
539
+ "epoch": 0.27,
540
+ "grad_norm": 1.2082987304246777,
541
+ "learning_rate": 4.8248741023488705e-06,
542
+ "loss": 0.3026,
543
+ "step": 74
544
+ },
545
+ {
546
+ "epoch": 0.28,
547
+ "grad_norm": 1.3432457490726049,
548
+ "learning_rate": 4.81942602338477e-06,
549
+ "loss": 0.2985,
550
+ "step": 75
551
+ },
552
+ {
553
+ "epoch": 0.28,
554
+ "grad_norm": 1.170337150254348,
555
+ "learning_rate": 4.813897666428054e-06,
556
+ "loss": 0.2969,
557
+ "step": 76
558
+ },
559
+ {
560
+ "epoch": 0.28,
561
+ "grad_norm": 1.339414484466056,
562
+ "learning_rate": 4.808289222821491e-06,
563
+ "loss": 0.2985,
564
+ "step": 77
565
+ },
566
+ {
567
+ "epoch": 0.29,
568
+ "grad_norm": 1.1944077580462804,
569
+ "learning_rate": 4.802600886679743e-06,
570
+ "loss": 0.2852,
571
+ "step": 78
572
+ },
573
+ {
574
+ "epoch": 0.29,
575
+ "grad_norm": 1.357246876413576,
576
+ "learning_rate": 4.79683285488264e-06,
577
+ "loss": 0.2904,
578
+ "step": 79
579
+ },
580
+ {
581
+ "epoch": 0.29,
582
+ "grad_norm": 1.4115119936533302,
583
+ "learning_rate": 4.790985327068376e-06,
584
+ "loss": 0.3079,
585
+ "step": 80
586
+ },
587
+ {
588
+ "epoch": 0.3,
589
+ "grad_norm": 1.285315536324781,
590
+ "learning_rate": 4.7850585056265866e-06,
591
+ "loss": 0.2816,
592
+ "step": 81
593
+ },
594
+ {
595
+ "epoch": 0.3,
596
+ "grad_norm": 1.3631452273406317,
597
+ "learning_rate": 4.779052595691355e-06,
598
+ "loss": 0.2865,
599
+ "step": 82
600
+ },
601
+ {
602
+ "epoch": 0.3,
603
+ "grad_norm": 1.196518391890594,
604
+ "learning_rate": 4.772967805134106e-06,
605
+ "loss": 0.2793,
606
+ "step": 83
607
+ },
608
+ {
609
+ "epoch": 0.31,
610
+ "grad_norm": 1.2485622601747421,
611
+ "learning_rate": 4.766804344556414e-06,
612
+ "loss": 0.2827,
613
+ "step": 84
614
+ },
615
+ {
616
+ "epoch": 0.31,
617
+ "grad_norm": 1.2945099002171803,
618
+ "learning_rate": 4.7605624272827125e-06,
619
+ "loss": 0.2854,
620
+ "step": 85
621
+ },
622
+ {
623
+ "epoch": 0.32,
624
+ "grad_norm": 1.224576498812201,
625
+ "learning_rate": 4.754242269352911e-06,
626
+ "loss": 0.2875,
627
+ "step": 86
628
+ },
629
+ {
630
+ "epoch": 0.32,
631
+ "grad_norm": 1.2535747430861524,
632
+ "learning_rate": 4.747844089514919e-06,
633
+ "loss": 0.2807,
634
+ "step": 87
635
+ },
636
+ {
637
+ "epoch": 0.32,
638
+ "grad_norm": 1.171951212608294,
639
+ "learning_rate": 4.741368109217072e-06,
640
+ "loss": 0.2761,
641
+ "step": 88
642
+ },
643
+ {
644
+ "epoch": 0.33,
645
+ "grad_norm": 1.2123280755320154,
646
+ "learning_rate": 4.734814552600469e-06,
647
+ "loss": 0.2832,
648
+ "step": 89
649
+ },
650
+ {
651
+ "epoch": 0.33,
652
+ "grad_norm": 1.1358700523339582,
653
+ "learning_rate": 4.728183646491215e-06,
654
+ "loss": 0.2871,
655
+ "step": 90
656
+ },
657
+ {
658
+ "epoch": 0.33,
659
+ "grad_norm": 1.1484698203958048,
660
+ "learning_rate": 4.721475620392567e-06,
661
+ "loss": 0.2806,
662
+ "step": 91
663
+ },
664
+ {
665
+ "epoch": 0.34,
666
+ "grad_norm": 1.1887290775946084,
667
+ "learning_rate": 4.714690706477e-06,
668
+ "loss": 0.2858,
669
+ "step": 92
670
+ },
671
+ {
672
+ "epoch": 0.34,
673
+ "grad_norm": 1.1568061250650739,
674
+ "learning_rate": 4.707829139578156e-06,
675
+ "loss": 0.2888,
676
+ "step": 93
677
+ },
678
+ {
679
+ "epoch": 0.35,
680
+ "grad_norm": 1.176832058354239,
681
+ "learning_rate": 4.700891157182729e-06,
682
+ "loss": 0.2829,
683
+ "step": 94
684
+ },
685
+ {
686
+ "epoch": 0.35,
687
+ "grad_norm": 1.138549309431515,
688
+ "learning_rate": 4.693876999422241e-06,
689
+ "loss": 0.2763,
690
+ "step": 95
691
+ },
692
+ {
693
+ "epoch": 0.35,
694
+ "grad_norm": 1.1479926100837645,
695
+ "learning_rate": 4.68678690906473e-06,
696
+ "loss": 0.2686,
697
+ "step": 96
698
+ },
699
+ {
700
+ "epoch": 0.36,
701
+ "grad_norm": 1.1771516377197246,
702
+ "learning_rate": 4.679621131506347e-06,
703
+ "loss": 0.2814,
704
+ "step": 97
705
+ },
706
+ {
707
+ "epoch": 0.36,
708
+ "grad_norm": 1.2184996974539424,
709
+ "learning_rate": 4.672379914762867e-06,
710
+ "loss": 0.2822,
711
+ "step": 98
712
+ },
713
+ {
714
+ "epoch": 0.36,
715
+ "grad_norm": 1.1792108348242942,
716
+ "learning_rate": 4.665063509461098e-06,
717
+ "loss": 0.282,
718
+ "step": 99
719
+ },
720
+ {
721
+ "epoch": 0.37,
722
+ "grad_norm": 1.2850683815489914,
723
+ "learning_rate": 4.657672168830211e-06,
724
+ "loss": 0.2776,
725
+ "step": 100
726
+ },
727
+ {
728
+ "epoch": 0.37,
729
+ "grad_norm": 1.2508897770511975,
730
+ "learning_rate": 4.650206148692977e-06,
731
+ "loss": 0.2787,
732
+ "step": 101
733
+ },
734
+ {
735
+ "epoch": 0.37,
736
+ "grad_norm": 1.2031990746786907,
737
+ "learning_rate": 4.642665707456908e-06,
738
+ "loss": 0.2719,
739
+ "step": 102
740
+ },
741
+ {
742
+ "epoch": 0.38,
743
+ "grad_norm": 1.1842474930123255,
744
+ "learning_rate": 4.635051106105316e-06,
745
+ "loss": 0.2732,
746
+ "step": 103
747
+ },
748
+ {
749
+ "epoch": 0.38,
750
+ "grad_norm": 1.2596970412015132,
751
+ "learning_rate": 4.627362608188281e-06,
752
+ "loss": 0.2731,
753
+ "step": 104
754
+ },
755
+ {
756
+ "epoch": 0.39,
757
+ "grad_norm": 1.4294759311096437,
758
+ "learning_rate": 4.619600479813524e-06,
759
+ "loss": 0.2738,
760
+ "step": 105
761
+ },
762
+ {
763
+ "epoch": 0.39,
764
+ "grad_norm": 1.31619095423113,
765
+ "learning_rate": 4.6117649896372055e-06,
766
+ "loss": 0.2764,
767
+ "step": 106
768
+ },
769
+ {
770
+ "epoch": 0.39,
771
+ "grad_norm": 1.2349728666776751,
772
+ "learning_rate": 4.6038564088546185e-06,
773
+ "loss": 0.2722,
774
+ "step": 107
775
+ },
776
+ {
777
+ "epoch": 0.4,
778
+ "grad_norm": 1.2418477065252158,
779
+ "learning_rate": 4.5958750111908065e-06,
780
+ "loss": 0.271,
781
+ "step": 108
782
+ },
783
+ {
784
+ "epoch": 0.4,
785
+ "grad_norm": 1.3529322240859796,
786
+ "learning_rate": 4.587821072891089e-06,
787
+ "loss": 0.276,
788
+ "step": 109
789
+ },
790
+ {
791
+ "epoch": 0.4,
792
+ "grad_norm": 1.2671711562594927,
793
+ "learning_rate": 4.579694872711501e-06,
794
+ "loss": 0.2706,
795
+ "step": 110
796
+ },
797
+ {
798
+ "epoch": 0.41,
799
+ "grad_norm": 1.238356873891121,
800
+ "learning_rate": 4.571496691909142e-06,
801
+ "loss": 0.2749,
802
+ "step": 111
803
+ },
804
+ {
805
+ "epoch": 0.41,
806
+ "grad_norm": 1.2059912760303926,
807
+ "learning_rate": 4.563226814232444e-06,
808
+ "loss": 0.2676,
809
+ "step": 112
810
+ },
811
+ {
812
+ "epoch": 0.42,
813
+ "grad_norm": 1.1876458610423755,
814
+ "learning_rate": 4.554885525911351e-06,
815
+ "loss": 0.2743,
816
+ "step": 113
817
+ },
818
+ {
819
+ "epoch": 0.42,
820
+ "grad_norm": 1.1715592937521375,
821
+ "learning_rate": 4.54647311564741e-06,
822
+ "loss": 0.2734,
823
+ "step": 114
824
+ },
825
+ {
826
+ "epoch": 0.42,
827
+ "grad_norm": 1.236329928620471,
828
+ "learning_rate": 4.53798987460378e-06,
829
+ "loss": 0.2855,
830
+ "step": 115
831
+ },
832
+ {
833
+ "epoch": 0.43,
834
+ "grad_norm": 1.1717820999866062,
835
+ "learning_rate": 4.529436096395157e-06,
836
+ "loss": 0.2699,
837
+ "step": 116
838
+ },
839
+ {
840
+ "epoch": 0.43,
841
+ "grad_norm": 1.3490101744641771,
842
+ "learning_rate": 4.520812077077604e-06,
843
+ "loss": 0.2731,
844
+ "step": 117
845
+ },
846
+ {
847
+ "epoch": 0.43,
848
+ "grad_norm": 1.192962777526519,
849
+ "learning_rate": 4.512118115138315e-06,
850
+ "loss": 0.2719,
851
+ "step": 118
852
+ },
853
+ {
854
+ "epoch": 0.44,
855
+ "grad_norm": 1.2384657820337475,
856
+ "learning_rate": 4.5033545114852734e-06,
857
+ "loss": 0.2647,
858
+ "step": 119
859
+ },
860
+ {
861
+ "epoch": 0.44,
862
+ "grad_norm": 1.2128578058956592,
863
+ "learning_rate": 4.494521569436845e-06,
864
+ "loss": 0.2615,
865
+ "step": 120
866
+ },
867
+ {
868
+ "epoch": 0.44,
869
+ "grad_norm": 1.3237640584842072,
870
+ "learning_rate": 4.485619594711278e-06,
871
+ "loss": 0.2663,
872
+ "step": 121
873
+ },
874
+ {
875
+ "epoch": 0.45,
876
+ "grad_norm": 1.2691929068372239,
877
+ "learning_rate": 4.476648895416116e-06,
878
+ "loss": 0.2614,
879
+ "step": 122
880
+ },
881
+ {
882
+ "epoch": 0.45,
883
+ "grad_norm": 1.2606618599832538,
884
+ "learning_rate": 4.467609782037543e-06,
885
+ "loss": 0.2606,
886
+ "step": 123
887
+ },
888
+ {
889
+ "epoch": 0.46,
890
+ "grad_norm": 1.3048381409549332,
891
+ "learning_rate": 4.4585025674296315e-06,
892
+ "loss": 0.2601,
893
+ "step": 124
894
+ },
895
+ {
896
+ "epoch": 0.46,
897
+ "grad_norm": 1.3022768451107203,
898
+ "learning_rate": 4.449327566803515e-06,
899
+ "loss": 0.2683,
900
+ "step": 125
901
+ },
902
+ {
903
+ "epoch": 0.46,
904
+ "grad_norm": 1.3820289309230962,
905
+ "learning_rate": 4.44008509771648e-06,
906
+ "loss": 0.2681,
907
+ "step": 126
908
+ },
909
+ {
910
+ "epoch": 0.47,
911
+ "grad_norm": 1.2802354999925132,
912
+ "learning_rate": 4.430775480060973e-06,
913
+ "loss": 0.2648,
914
+ "step": 127
915
+ },
916
+ {
917
+ "epoch": 0.47,
918
+ "grad_norm": 1.3242106497833372,
919
+ "learning_rate": 4.4213990360535274e-06,
920
+ "loss": 0.268,
921
+ "step": 128
922
+ },
923
+ {
924
+ "epoch": 0.47,
925
+ "grad_norm": 1.3009976864959876,
926
+ "learning_rate": 4.411956090223618e-06,
927
+ "loss": 0.2662,
928
+ "step": 129
929
+ },
930
+ {
931
+ "epoch": 0.48,
932
+ "grad_norm": 1.3212829688401424,
933
+ "learning_rate": 4.4024469694024194e-06,
934
+ "loss": 0.2605,
935
+ "step": 130
936
+ },
937
+ {
938
+ "epoch": 0.48,
939
+ "grad_norm": 1.2123869956343973,
940
+ "learning_rate": 4.3928720027115015e-06,
941
+ "loss": 0.2604,
942
+ "step": 131
943
+ },
944
+ {
945
+ "epoch": 0.48,
946
+ "grad_norm": 1.284537459167204,
947
+ "learning_rate": 4.383231521551432e-06,
948
+ "loss": 0.2593,
949
+ "step": 132
950
+ },
951
+ {
952
+ "epoch": 0.49,
953
+ "grad_norm": 1.443338680183996,
954
+ "learning_rate": 4.373525859590313e-06,
955
+ "loss": 0.2561,
956
+ "step": 133
957
+ },
958
+ {
959
+ "epoch": 0.49,
960
+ "grad_norm": 1.2809230468289576,
961
+ "learning_rate": 4.3637553527522265e-06,
962
+ "loss": 0.2599,
963
+ "step": 134
964
+ },
965
+ {
966
+ "epoch": 0.5,
967
+ "grad_norm": 1.3669470609932883,
968
+ "learning_rate": 4.3539203392056114e-06,
969
+ "loss": 0.2587,
970
+ "step": 135
971
+ },
972
+ {
973
+ "epoch": 0.5,
974
+ "grad_norm": 1.4112940230474231,
975
+ "learning_rate": 4.3440211593515556e-06,
976
+ "loss": 0.2585,
977
+ "step": 136
978
+ },
979
+ {
980
+ "epoch": 0.5,
981
+ "eval_loss": 0.28355109691619873,
982
+ "eval_runtime": 1744.5175,
983
+ "eval_samples_per_second": 1.325,
984
+ "eval_steps_per_second": 0.074,
985
+ "step": 136
986
+ },
987
+ {
988
+ "epoch": 0.5,
989
+ "grad_norm": 1.3061396480876788,
990
+ "learning_rate": 4.33405815581202e-06,
991
+ "loss": 0.2549,
992
+ "step": 137
993
+ },
994
+ {
995
+ "epoch": 0.51,
996
+ "grad_norm": 1.46460991921356,
997
+ "learning_rate": 4.324031673417971e-06,
998
+ "loss": 0.2639,
999
+ "step": 138
1000
+ },
1001
+ {
1002
+ "epoch": 0.51,
1003
+ "grad_norm": 1.211168578821325,
1004
+ "learning_rate": 4.313942059197457e-06,
1005
+ "loss": 0.2581,
1006
+ "step": 139
1007
+ },
1008
+ {
1009
+ "epoch": 0.51,
1010
+ "grad_norm": 1.4657150585182341,
1011
+ "learning_rate": 4.303789662363587e-06,
1012
+ "loss": 0.2616,
1013
+ "step": 140
1014
+ },
1015
+ {
1016
+ "epoch": 0.52,
1017
+ "grad_norm": 1.4251800081691455,
1018
+ "learning_rate": 4.29357483430245e-06,
1019
+ "loss": 0.2668,
1020
+ "step": 141
1021
+ },
1022
+ {
1023
+ "epoch": 0.52,
1024
+ "grad_norm": 1.3599666478045191,
1025
+ "learning_rate": 4.283297928560951e-06,
1026
+ "loss": 0.2598,
1027
+ "step": 142
1028
+ },
1029
+ {
1030
+ "epoch": 0.53,
1031
+ "grad_norm": 1.6103346253156021,
1032
+ "learning_rate": 4.272959300834574e-06,
1033
+ "loss": 0.2656,
1034
+ "step": 143
1035
+ },
1036
+ {
1037
+ "epoch": 0.53,
1038
+ "grad_norm": 1.2184694580930981,
1039
+ "learning_rate": 4.262559308955072e-06,
1040
+ "loss": 0.2546,
1041
+ "step": 144
1042
+ },
1043
+ {
1044
+ "epoch": 0.53,
1045
+ "grad_norm": 1.3362006281948362,
1046
+ "learning_rate": 4.252098312878083e-06,
1047
+ "loss": 0.2557,
1048
+ "step": 145
1049
+ },
1050
+ {
1051
+ "epoch": 0.54,
1052
+ "grad_norm": 1.3369296531115935,
1053
+ "learning_rate": 4.241576674670668e-06,
1054
+ "loss": 0.2568,
1055
+ "step": 146
1056
+ },
1057
+ {
1058
+ "epoch": 0.54,
1059
+ "grad_norm": 1.4747872641188995,
1060
+ "learning_rate": 4.230994758498783e-06,
1061
+ "loss": 0.2564,
1062
+ "step": 147
1063
+ },
1064
+ {
1065
+ "epoch": 0.54,
1066
+ "grad_norm": 1.60778480089848,
1067
+ "learning_rate": 4.220352930614672e-06,
1068
+ "loss": 0.2573,
1069
+ "step": 148
1070
+ },
1071
+ {
1072
+ "epoch": 0.55,
1073
+ "grad_norm": 1.188044808018822,
1074
+ "learning_rate": 4.209651559344195e-06,
1075
+ "loss": 0.2525,
1076
+ "step": 149
1077
+ },
1078
+ {
1079
+ "epoch": 0.55,
1080
+ "grad_norm": 1.5856639134844415,
1081
+ "learning_rate": 4.198891015074074e-06,
1082
+ "loss": 0.2647,
1083
+ "step": 150
1084
+ },
1085
+ {
1086
+ "epoch": 0.55,
1087
+ "grad_norm": 1.2859262024596512,
1088
+ "learning_rate": 4.1880716702390764e-06,
1089
+ "loss": 0.2471,
1090
+ "step": 151
1091
+ },
1092
+ {
1093
+ "epoch": 0.56,
1094
+ "grad_norm": 1.4653590828956073,
1095
+ "learning_rate": 4.177193899309127e-06,
1096
+ "loss": 0.2575,
1097
+ "step": 152
1098
+ },
1099
+ {
1100
+ "epoch": 0.56,
1101
+ "grad_norm": 1.1821237121686685,
1102
+ "learning_rate": 4.166258078776342e-06,
1103
+ "loss": 0.2493,
1104
+ "step": 153
1105
+ },
1106
+ {
1107
+ "epoch": 0.57,
1108
+ "grad_norm": 1.575597475848357,
1109
+ "learning_rate": 4.155264587142002e-06,
1110
+ "loss": 0.2537,
1111
+ "step": 154
1112
+ },
1113
+ {
1114
+ "epoch": 0.57,
1115
+ "grad_norm": 1.2702085752651588,
1116
+ "learning_rate": 4.144213804903449e-06,
1117
+ "loss": 0.2493,
1118
+ "step": 155
1119
+ },
1120
+ {
1121
+ "epoch": 0.57,
1122
+ "grad_norm": 1.5026735427361002,
1123
+ "learning_rate": 4.133106114540923e-06,
1124
+ "loss": 0.2505,
1125
+ "step": 156
1126
+ },
1127
+ {
1128
+ "epoch": 0.58,
1129
+ "grad_norm": 1.5297903686100347,
1130
+ "learning_rate": 4.121941900504316e-06,
1131
+ "loss": 0.2472,
1132
+ "step": 157
1133
+ },
1134
+ {
1135
+ "epoch": 0.58,
1136
+ "grad_norm": 1.25258373375573,
1137
+ "learning_rate": 4.110721549199866e-06,
1138
+ "loss": 0.2487,
1139
+ "step": 158
1140
+ },
1141
+ {
1142
+ "epoch": 0.58,
1143
+ "grad_norm": 1.5941545034573665,
1144
+ "learning_rate": 4.099445448976793e-06,
1145
+ "loss": 0.2497,
1146
+ "step": 159
1147
+ },
1148
+ {
1149
+ "epoch": 0.59,
1150
+ "grad_norm": 1.3096080921873048,
1151
+ "learning_rate": 4.088113990113846e-06,
1152
+ "loss": 0.2439,
1153
+ "step": 160
1154
+ },
1155
+ {
1156
+ "epoch": 0.59,
1157
+ "grad_norm": 1.6950266606195492,
1158
+ "learning_rate": 4.076727564805803e-06,
1159
+ "loss": 0.2538,
1160
+ "step": 161
1161
+ },
1162
+ {
1163
+ "epoch": 0.6,
1164
+ "grad_norm": 1.440485526817555,
1165
+ "learning_rate": 4.065286567149891e-06,
1166
+ "loss": 0.2613,
1167
+ "step": 162
1168
+ },
1169
+ {
1170
+ "epoch": 0.6,
1171
+ "grad_norm": 1.606032223752871,
1172
+ "learning_rate": 4.0537913931321495e-06,
1173
+ "loss": 0.2505,
1174
+ "step": 163
1175
+ },
1176
+ {
1177
+ "epoch": 0.6,
1178
+ "grad_norm": 1.5319951141665498,
1179
+ "learning_rate": 4.042242440613724e-06,
1180
+ "loss": 0.256,
1181
+ "step": 164
1182
+ },
1183
+ {
1184
+ "epoch": 0.61,
1185
+ "grad_norm": 1.3468098768373629,
1186
+ "learning_rate": 4.030640109317096e-06,
1187
+ "loss": 0.2424,
1188
+ "step": 165
1189
+ },
1190
+ {
1191
+ "epoch": 0.61,
1192
+ "grad_norm": 1.6652562481471478,
1193
+ "learning_rate": 4.018984800812248e-06,
1194
+ "loss": 0.2396,
1195
+ "step": 166
1196
+ },
1197
+ {
1198
+ "epoch": 0.61,
1199
+ "grad_norm": 1.302975081280886,
1200
+ "learning_rate": 4.007276918502763e-06,
1201
+ "loss": 0.2462,
1202
+ "step": 167
1203
+ },
1204
+ {
1205
+ "epoch": 0.62,
1206
+ "grad_norm": 1.623125313268604,
1207
+ "learning_rate": 3.995516867611865e-06,
1208
+ "loss": 0.256,
1209
+ "step": 168
1210
+ },
1211
+ {
1212
+ "epoch": 0.62,
1213
+ "grad_norm": 1.3069782036585045,
1214
+ "learning_rate": 3.983705055168391e-06,
1215
+ "loss": 0.2518,
1216
+ "step": 169
1217
+ },
1218
+ {
1219
+ "epoch": 0.62,
1220
+ "grad_norm": 1.6527449270834242,
1221
+ "learning_rate": 3.971841889992706e-06,
1222
+ "loss": 0.2544,
1223
+ "step": 170
1224
+ },
1225
+ {
1226
+ "epoch": 0.63,
1227
+ "grad_norm": 1.3586948189643275,
1228
+ "learning_rate": 3.959927782682551e-06,
1229
+ "loss": 0.2491,
1230
+ "step": 171
1231
+ },
1232
+ {
1233
+ "epoch": 0.63,
1234
+ "grad_norm": 1.3440233460948727,
1235
+ "learning_rate": 3.947963145598833e-06,
1236
+ "loss": 0.2516,
1237
+ "step": 172
1238
+ },
1239
+ {
1240
+ "epoch": 0.64,
1241
+ "grad_norm": 1.3389168317613516,
1242
+ "learning_rate": 3.935948392851354e-06,
1243
+ "loss": 0.2541,
1244
+ "step": 173
1245
+ },
1246
+ {
1247
+ "epoch": 0.64,
1248
+ "grad_norm": 1.3142664585396417,
1249
+ "learning_rate": 3.923883940284472e-06,
1250
+ "loss": 0.2508,
1251
+ "step": 174
1252
+ },
1253
+ {
1254
+ "epoch": 0.64,
1255
+ "grad_norm": 1.2767521320981983,
1256
+ "learning_rate": 3.911770205462717e-06,
1257
+ "loss": 0.2479,
1258
+ "step": 175
1259
+ },
1260
+ {
1261
+ "epoch": 0.65,
1262
+ "grad_norm": 1.3281972191838929,
1263
+ "learning_rate": 3.899607607656334e-06,
1264
+ "loss": 0.2501,
1265
+ "step": 176
1266
+ },
1267
+ {
1268
+ "epoch": 0.65,
1269
+ "grad_norm": 1.3793116543581005,
1270
+ "learning_rate": 3.887396567826769e-06,
1271
+ "loss": 0.2454,
1272
+ "step": 177
1273
+ },
1274
+ {
1275
+ "epoch": 0.65,
1276
+ "grad_norm": 1.3293987156576104,
1277
+ "learning_rate": 3.875137508612104e-06,
1278
+ "loss": 0.249,
1279
+ "step": 178
1280
+ },
1281
+ {
1282
+ "epoch": 0.66,
1283
+ "grad_norm": 1.4957835845929142,
1284
+ "learning_rate": 3.862830854312427e-06,
1285
+ "loss": 0.2445,
1286
+ "step": 179
1287
+ },
1288
+ {
1289
+ "epoch": 0.66,
1290
+ "grad_norm": 1.2804679875446887,
1291
+ "learning_rate": 3.850477030875147e-06,
1292
+ "loss": 0.2411,
1293
+ "step": 180
1294
+ },
1295
+ {
1296
+ "epoch": 0.66,
1297
+ "grad_norm": 1.5611119218300138,
1298
+ "learning_rate": 3.838076465880248e-06,
1299
+ "loss": 0.237,
1300
+ "step": 181
1301
+ },
1302
+ {
1303
+ "epoch": 0.67,
1304
+ "grad_norm": 1.3387338916825537,
1305
+ "learning_rate": 3.825629588525498e-06,
1306
+ "loss": 0.2429,
1307
+ "step": 182
1308
+ },
1309
+ {
1310
+ "epoch": 0.67,
1311
+ "grad_norm": 1.5091720406707172,
1312
+ "learning_rate": 3.813136829611583e-06,
1313
+ "loss": 0.2428,
1314
+ "step": 183
1315
+ },
1316
+ {
1317
+ "epoch": 0.68,
1318
+ "grad_norm": 1.359116281666385,
1319
+ "learning_rate": 3.8005986215272056e-06,
1320
+ "loss": 0.2543,
1321
+ "step": 184
1322
+ },
1323
+ {
1324
+ "epoch": 0.68,
1325
+ "grad_norm": 1.4094254259139338,
1326
+ "learning_rate": 3.7880153982341167e-06,
1327
+ "loss": 0.2502,
1328
+ "step": 185
1329
+ },
1330
+ {
1331
+ "epoch": 0.68,
1332
+ "grad_norm": 1.2806047483095333,
1333
+ "learning_rate": 3.7753875952520943e-06,
1334
+ "loss": 0.2431,
1335
+ "step": 186
1336
+ },
1337
+ {
1338
+ "epoch": 0.69,
1339
+ "grad_norm": 1.409218880016104,
1340
+ "learning_rate": 3.7627156496438686e-06,
1341
+ "loss": 0.2463,
1342
+ "step": 187
1343
+ },
1344
+ {
1345
+ "epoch": 0.69,
1346
+ "grad_norm": 1.2466244404207094,
1347
+ "learning_rate": 3.7500000000000005e-06,
1348
+ "loss": 0.2372,
1349
+ "step": 188
1350
+ },
1351
+ {
1352
+ "epoch": 0.69,
1353
+ "grad_norm": 1.4192484726979884,
1354
+ "learning_rate": 3.7372410864236954e-06,
1355
+ "loss": 0.2396,
1356
+ "step": 189
1357
+ },
1358
+ {
1359
+ "epoch": 0.7,
1360
+ "grad_norm": 1.3260879207799772,
1361
+ "learning_rate": 3.7244393505155713e-06,
1362
+ "loss": 0.241,
1363
+ "step": 190
1364
+ },
1365
+ {
1366
+ "epoch": 0.7,
1367
+ "grad_norm": 1.6407257220698948,
1368
+ "learning_rate": 3.7115952353583804e-06,
1369
+ "loss": 0.2552,
1370
+ "step": 191
1371
+ },
1372
+ {
1373
+ "epoch": 0.71,
1374
+ "grad_norm": 1.4113760059054485,
1375
+ "learning_rate": 3.6987091855016667e-06,
1376
+ "loss": 0.2513,
1377
+ "step": 192
1378
+ },
1379
+ {
1380
+ "epoch": 0.71,
1381
+ "grad_norm": 1.3008883773347888,
1382
+ "learning_rate": 3.6857816469463806e-06,
1383
+ "loss": 0.2361,
1384
+ "step": 193
1385
+ },
1386
+ {
1387
+ "epoch": 0.71,
1388
+ "grad_norm": 1.3040857591494066,
1389
+ "learning_rate": 3.6728130671294485e-06,
1390
+ "loss": 0.2491,
1391
+ "step": 194
1392
+ },
1393
+ {
1394
+ "epoch": 0.72,
1395
+ "grad_norm": 1.2543618451342111,
1396
+ "learning_rate": 3.6598038949082777e-06,
1397
+ "loss": 0.2309,
1398
+ "step": 195
1399
+ },
1400
+ {
1401
+ "epoch": 0.72,
1402
+ "grad_norm": 1.3944108707435374,
1403
+ "learning_rate": 3.6467545805452266e-06,
1404
+ "loss": 0.2426,
1405
+ "step": 196
1406
+ },
1407
+ {
1408
+ "epoch": 0.72,
1409
+ "grad_norm": 1.301851485207592,
1410
+ "learning_rate": 3.6336655756920198e-06,
1411
+ "loss": 0.2421,
1412
+ "step": 197
1413
+ },
1414
+ {
1415
+ "epoch": 0.73,
1416
+ "grad_norm": 1.3562155385998595,
1417
+ "learning_rate": 3.620537333374114e-06,
1418
+ "loss": 0.2406,
1419
+ "step": 198
1420
+ },
1421
+ {
1422
+ "epoch": 0.73,
1423
+ "grad_norm": 1.4263666275672418,
1424
+ "learning_rate": 3.6073703079750204e-06,
1425
+ "loss": 0.2418,
1426
+ "step": 199
1427
+ },
1428
+ {
1429
+ "epoch": 0.73,
1430
+ "grad_norm": 1.2767612877970262,
1431
+ "learning_rate": 3.594164955220577e-06,
1432
+ "loss": 0.2353,
1433
+ "step": 200
1434
+ },
1435
+ {
1436
+ "epoch": 0.74,
1437
+ "grad_norm": 1.3349267171117716,
1438
+ "learning_rate": 3.5809217321631745e-06,
1439
+ "loss": 0.2348,
1440
+ "step": 201
1441
+ },
1442
+ {
1443
+ "epoch": 0.74,
1444
+ "grad_norm": 1.2217693484408796,
1445
+ "learning_rate": 3.5676410971659404e-06,
1446
+ "loss": 0.2287,
1447
+ "step": 202
1448
+ },
1449
+ {
1450
+ "epoch": 0.75,
1451
+ "grad_norm": 1.4554473054976789,
1452
+ "learning_rate": 3.5543235098868702e-06,
1453
+ "loss": 0.241,
1454
+ "step": 203
1455
+ },
1456
+ {
1457
+ "epoch": 0.75,
1458
+ "grad_norm": 1.184805169962002,
1459
+ "learning_rate": 3.5409694312629193e-06,
1460
+ "loss": 0.2352,
1461
+ "step": 204
1462
+ },
1463
+ {
1464
+ "epoch": 0.75,
1465
+ "eval_loss": 0.25444912910461426,
1466
+ "eval_runtime": 1745.7708,
1467
+ "eval_samples_per_second": 1.324,
1468
+ "eval_steps_per_second": 0.074,
1469
+ "step": 204
1470
+ },
1471
+ {
1472
+ "epoch": 0.75,
1473
+ "grad_norm": 1.2973792749867632,
1474
+ "learning_rate": 3.527579323494055e-06,
1475
+ "loss": 0.2404,
1476
+ "step": 205
1477
+ },
1478
+ {
1479
+ "epoch": 0.76,
1480
+ "grad_norm": 1.390330195755624,
1481
+ "learning_rate": 3.5141536500272494e-06,
1482
+ "loss": 0.2397,
1483
+ "step": 206
1484
+ },
1485
+ {
1486
+ "epoch": 0.76,
1487
+ "grad_norm": 1.2415077962351395,
1488
+ "learning_rate": 3.5006928755404467e-06,
1489
+ "loss": 0.2296,
1490
+ "step": 207
1491
+ },
1492
+ {
1493
+ "epoch": 0.76,
1494
+ "grad_norm": 1.3223264932925407,
1495
+ "learning_rate": 3.4871974659264786e-06,
1496
+ "loss": 0.2332,
1497
+ "step": 208
1498
+ },
1499
+ {
1500
+ "epoch": 0.77,
1501
+ "grad_norm": 1.4376836200586416,
1502
+ "learning_rate": 3.473667888276935e-06,
1503
+ "loss": 0.2361,
1504
+ "step": 209
1505
+ },
1506
+ {
1507
+ "epoch": 0.77,
1508
+ "grad_norm": 1.2495709137167788,
1509
+ "learning_rate": 3.4601046108660036e-06,
1510
+ "loss": 0.2351,
1511
+ "step": 210
1512
+ },
1513
+ {
1514
+ "epoch": 0.78,
1515
+ "grad_norm": 1.4449247677336339,
1516
+ "learning_rate": 3.446508103134259e-06,
1517
+ "loss": 0.2373,
1518
+ "step": 211
1519
+ },
1520
+ {
1521
+ "epoch": 0.78,
1522
+ "grad_norm": 1.3961526866418432,
1523
+ "learning_rate": 3.4328788356724135e-06,
1524
+ "loss": 0.2383,
1525
+ "step": 212
1526
+ },
1527
+ {
1528
+ "epoch": 0.78,
1529
+ "grad_norm": 1.2766356071702671,
1530
+ "learning_rate": 3.419217280205032e-06,
1531
+ "loss": 0.2348,
1532
+ "step": 213
1533
+ },
1534
+ {
1535
+ "epoch": 0.79,
1536
+ "grad_norm": 1.2201985305952152,
1537
+ "learning_rate": 3.4055239095742067e-06,
1538
+ "loss": 0.236,
1539
+ "step": 214
1540
+ },
1541
+ {
1542
+ "epoch": 0.79,
1543
+ "grad_norm": 1.3670381437866368,
1544
+ "learning_rate": 3.3917991977231855e-06,
1545
+ "loss": 0.228,
1546
+ "step": 215
1547
+ },
1548
+ {
1549
+ "epoch": 0.79,
1550
+ "grad_norm": 1.2724648753569285,
1551
+ "learning_rate": 3.378043619679974e-06,
1552
+ "loss": 0.2386,
1553
+ "step": 216
1554
+ },
1555
+ {
1556
+ "epoch": 0.8,
1557
+ "grad_norm": 1.2826844172302947,
1558
+ "learning_rate": 3.364257651540891e-06,
1559
+ "loss": 0.2366,
1560
+ "step": 217
1561
+ },
1562
+ {
1563
+ "epoch": 0.8,
1564
+ "grad_norm": 1.1767059777022655,
1565
+ "learning_rate": 3.3504417704540925e-06,
1566
+ "loss": 0.2251,
1567
+ "step": 218
1568
+ },
1569
+ {
1570
+ "epoch": 0.8,
1571
+ "grad_norm": 1.3111513963454882,
1572
+ "learning_rate": 3.3365964546030544e-06,
1573
+ "loss": 0.2396,
1574
+ "step": 219
1575
+ },
1576
+ {
1577
+ "epoch": 0.81,
1578
+ "grad_norm": 1.2617225478707708,
1579
+ "learning_rate": 3.322722183190025e-06,
1580
+ "loss": 0.2412,
1581
+ "step": 220
1582
+ },
1583
+ {
1584
+ "epoch": 0.81,
1585
+ "grad_norm": 1.2183220743609309,
1586
+ "learning_rate": 3.308819436419437e-06,
1587
+ "loss": 0.2276,
1588
+ "step": 221
1589
+ },
1590
+ {
1591
+ "epoch": 0.82,
1592
+ "grad_norm": 1.31561824749082,
1593
+ "learning_rate": 3.2948886954812877e-06,
1594
+ "loss": 0.2404,
1595
+ "step": 222
1596
+ },
1597
+ {
1598
+ "epoch": 0.82,
1599
+ "grad_norm": 1.250087552624437,
1600
+ "learning_rate": 3.280930442534486e-06,
1601
+ "loss": 0.2263,
1602
+ "step": 223
1603
+ },
1604
+ {
1605
+ "epoch": 0.82,
1606
+ "grad_norm": 1.2524310598377044,
1607
+ "learning_rate": 3.26694516069016e-06,
1608
+ "loss": 0.2368,
1609
+ "step": 224
1610
+ },
1611
+ {
1612
+ "epoch": 0.83,
1613
+ "grad_norm": 1.3487266981725987,
1614
+ "learning_rate": 3.252933333994942e-06,
1615
+ "loss": 0.2243,
1616
+ "step": 225
1617
+ },
1618
+ {
1619
+ "epoch": 0.83,
1620
+ "grad_norm": 1.2427013509424278,
1621
+ "learning_rate": 3.238895447414211e-06,
1622
+ "loss": 0.2366,
1623
+ "step": 226
1624
+ },
1625
+ {
1626
+ "epoch": 0.83,
1627
+ "grad_norm": 1.268723527146989,
1628
+ "learning_rate": 3.2248319868153067e-06,
1629
+ "loss": 0.2262,
1630
+ "step": 227
1631
+ },
1632
+ {
1633
+ "epoch": 0.84,
1634
+ "grad_norm": 1.2476040692827028,
1635
+ "learning_rate": 3.210743438950718e-06,
1636
+ "loss": 0.234,
1637
+ "step": 228
1638
+ },
1639
+ {
1640
+ "epoch": 0.84,
1641
+ "grad_norm": 1.2944243964732431,
1642
+ "learning_rate": 3.196630291441231e-06,
1643
+ "loss": 0.2261,
1644
+ "step": 229
1645
+ },
1646
+ {
1647
+ "epoch": 0.84,
1648
+ "grad_norm": 1.2348938264581308,
1649
+ "learning_rate": 3.182493032759053e-06,
1650
+ "loss": 0.2368,
1651
+ "step": 230
1652
+ },
1653
+ {
1654
+ "epoch": 0.85,
1655
+ "grad_norm": 1.3877133957904717,
1656
+ "learning_rate": 3.168332152210909e-06,
1657
+ "loss": 0.2342,
1658
+ "step": 231
1659
+ },
1660
+ {
1661
+ "epoch": 0.85,
1662
+ "grad_norm": 1.2088837041711673,
1663
+ "learning_rate": 3.154148139921102e-06,
1664
+ "loss": 0.222,
1665
+ "step": 232
1666
+ },
1667
+ {
1668
+ "epoch": 0.86,
1669
+ "grad_norm": 1.4750513048080165,
1670
+ "learning_rate": 3.1399414868145506e-06,
1671
+ "loss": 0.2301,
1672
+ "step": 233
1673
+ },
1674
+ {
1675
+ "epoch": 0.86,
1676
+ "grad_norm": 1.2097458338635088,
1677
+ "learning_rate": 3.1257126845998e-06,
1678
+ "loss": 0.2365,
1679
+ "step": 234
1680
+ },
1681
+ {
1682
+ "epoch": 0.86,
1683
+ "grad_norm": 1.3570468614316236,
1684
+ "learning_rate": 3.1114622257520004e-06,
1685
+ "loss": 0.2275,
1686
+ "step": 235
1687
+ },
1688
+ {
1689
+ "epoch": 0.87,
1690
+ "grad_norm": 1.2331713108579336,
1691
+ "learning_rate": 3.0971906034958616e-06,
1692
+ "loss": 0.2193,
1693
+ "step": 236
1694
+ },
1695
+ {
1696
+ "epoch": 0.87,
1697
+ "grad_norm": 1.330924002893457,
1698
+ "learning_rate": 3.0828983117885856e-06,
1699
+ "loss": 0.2258,
1700
+ "step": 237
1701
+ },
1702
+ {
1703
+ "epoch": 0.87,
1704
+ "grad_norm": 1.2713775149937143,
1705
+ "learning_rate": 3.0685858453027668e-06,
1706
+ "loss": 0.2287,
1707
+ "step": 238
1708
+ },
1709
+ {
1710
+ "epoch": 0.88,
1711
+ "grad_norm": 1.3460227514964078,
1712
+ "learning_rate": 3.05425369940927e-06,
1713
+ "loss": 0.2268,
1714
+ "step": 239
1715
+ },
1716
+ {
1717
+ "epoch": 0.88,
1718
+ "grad_norm": 1.3124465221253792,
1719
+ "learning_rate": 3.0399023701600903e-06,
1720
+ "loss": 0.2237,
1721
+ "step": 240
1722
+ },
1723
+ {
1724
+ "epoch": 0.89,
1725
+ "grad_norm": 1.2621420000416141,
1726
+ "learning_rate": 3.0255323542711784e-06,
1727
+ "loss": 0.221,
1728
+ "step": 241
1729
+ },
1730
+ {
1731
+ "epoch": 0.89,
1732
+ "grad_norm": 1.3207975689997922,
1733
+ "learning_rate": 3.011144149105251e-06,
1734
+ "loss": 0.2177,
1735
+ "step": 242
1736
+ },
1737
+ {
1738
+ "epoch": 0.89,
1739
+ "grad_norm": 1.3364690610440046,
1740
+ "learning_rate": 2.996738252654577e-06,
1741
+ "loss": 0.2266,
1742
+ "step": 243
1743
+ },
1744
+ {
1745
+ "epoch": 0.9,
1746
+ "grad_norm": 1.3069082882086795,
1747
+ "learning_rate": 2.9823151635237424e-06,
1748
+ "loss": 0.2274,
1749
+ "step": 244
1750
+ },
1751
+ {
1752
+ "epoch": 0.9,
1753
+ "grad_norm": 1.402608898892496,
1754
+ "learning_rate": 2.9678753809123884e-06,
1755
+ "loss": 0.233,
1756
+ "step": 245
1757
+ },
1758
+ {
1759
+ "epoch": 0.9,
1760
+ "grad_norm": 1.3349783439901974,
1761
+ "learning_rate": 2.9534194045979397e-06,
1762
+ "loss": 0.2198,
1763
+ "step": 246
1764
+ },
1765
+ {
1766
+ "epoch": 0.91,
1767
+ "grad_norm": 1.3319911413244738,
1768
+ "learning_rate": 2.938947734918302e-06,
1769
+ "loss": 0.2241,
1770
+ "step": 247
1771
+ },
1772
+ {
1773
+ "epoch": 0.91,
1774
+ "grad_norm": 1.2836113523110935,
1775
+ "learning_rate": 2.924460872754547e-06,
1776
+ "loss": 0.2247,
1777
+ "step": 248
1778
+ },
1779
+ {
1780
+ "epoch": 0.91,
1781
+ "grad_norm": 1.3420053396118825,
1782
+ "learning_rate": 2.9099593195135743e-06,
1783
+ "loss": 0.2245,
1784
+ "step": 249
1785
+ },
1786
+ {
1787
+ "epoch": 0.92,
1788
+ "grad_norm": 1.3018957576647208,
1789
+ "learning_rate": 2.8954435771107604e-06,
1790
+ "loss": 0.2198,
1791
+ "step": 250
1792
+ },
1793
+ {
1794
+ "epoch": 0.92,
1795
+ "grad_norm": 1.493108819116986,
1796
+ "learning_rate": 2.8809141479525843e-06,
1797
+ "loss": 0.2261,
1798
+ "step": 251
1799
+ },
1800
+ {
1801
+ "epoch": 0.93,
1802
+ "grad_norm": 1.2240817395656585,
1803
+ "learning_rate": 2.8663715349192388e-06,
1804
+ "loss": 0.2182,
1805
+ "step": 252
1806
+ },
1807
+ {
1808
+ "epoch": 0.93,
1809
+ "grad_norm": 1.3972966685231503,
1810
+ "learning_rate": 2.8518162413472266e-06,
1811
+ "loss": 0.2289,
1812
+ "step": 253
1813
+ },
1814
+ {
1815
+ "epoch": 0.93,
1816
+ "grad_norm": 1.3158850314947335,
1817
+ "learning_rate": 2.8372487710119374e-06,
1818
+ "loss": 0.2286,
1819
+ "step": 254
1820
+ },
1821
+ {
1822
+ "epoch": 0.94,
1823
+ "grad_norm": 1.295772538693981,
1824
+ "learning_rate": 2.8226696281102134e-06,
1825
+ "loss": 0.2157,
1826
+ "step": 255
1827
+ },
1828
+ {
1829
+ "epoch": 0.94,
1830
+ "grad_norm": 1.34085577207588,
1831
+ "learning_rate": 2.8080793172428965e-06,
1832
+ "loss": 0.2223,
1833
+ "step": 256
1834
+ },
1835
+ {
1836
+ "epoch": 0.94,
1837
+ "grad_norm": 1.3610764715193495,
1838
+ "learning_rate": 2.7934783433973672e-06,
1839
+ "loss": 0.2227,
1840
+ "step": 257
1841
+ },
1842
+ {
1843
+ "epoch": 0.95,
1844
+ "grad_norm": 1.2629712566442401,
1845
+ "learning_rate": 2.778867211930061e-06,
1846
+ "loss": 0.2263,
1847
+ "step": 258
1848
+ },
1849
+ {
1850
+ "epoch": 0.95,
1851
+ "grad_norm": 1.2782582856568219,
1852
+ "learning_rate": 2.764246428548983e-06,
1853
+ "loss": 0.2234,
1854
+ "step": 259
1855
+ },
1856
+ {
1857
+ "epoch": 0.96,
1858
+ "grad_norm": 1.2621019245043847,
1859
+ "learning_rate": 2.7496164992961995e-06,
1860
+ "loss": 0.2177,
1861
+ "step": 260
1862
+ },
1863
+ {
1864
+ "epoch": 0.96,
1865
+ "grad_norm": 1.2033350046761524,
1866
+ "learning_rate": 2.7349779305303263e-06,
1867
+ "loss": 0.2226,
1868
+ "step": 261
1869
+ },
1870
+ {
1871
+ "epoch": 0.96,
1872
+ "grad_norm": 1.361220136423699,
1873
+ "learning_rate": 2.720331228909005e-06,
1874
+ "loss": 0.2179,
1875
+ "step": 262
1876
+ },
1877
+ {
1878
+ "epoch": 0.97,
1879
+ "grad_norm": 1.3715434561254194,
1880
+ "learning_rate": 2.7056769013713623e-06,
1881
+ "loss": 0.2231,
1882
+ "step": 263
1883
+ },
1884
+ {
1885
+ "epoch": 0.97,
1886
+ "grad_norm": 1.1330086039392537,
1887
+ "learning_rate": 2.691015455120468e-06,
1888
+ "loss": 0.2164,
1889
+ "step": 264
1890
+ },
1891
+ {
1892
+ "epoch": 0.97,
1893
+ "grad_norm": 1.2694263709270768,
1894
+ "learning_rate": 2.6763473976057776e-06,
1895
+ "loss": 0.2127,
1896
+ "step": 265
1897
+ },
1898
+ {
1899
+ "epoch": 0.98,
1900
+ "grad_norm": 1.3274231972419466,
1901
+ "learning_rate": 2.6616732365055713e-06,
1902
+ "loss": 0.2092,
1903
+ "step": 266
1904
+ },
1905
+ {
1906
+ "epoch": 0.98,
1907
+ "grad_norm": 1.276485394682339,
1908
+ "learning_rate": 2.64699347970938e-06,
1909
+ "loss": 0.2206,
1910
+ "step": 267
1911
+ },
1912
+ {
1913
+ "epoch": 0.98,
1914
+ "grad_norm": 1.33640777595863,
1915
+ "learning_rate": 2.6323086353004077e-06,
1916
+ "loss": 0.2201,
1917
+ "step": 268
1918
+ },
1919
+ {
1920
+ "epoch": 0.99,
1921
+ "grad_norm": 1.2867150222472765,
1922
+ "learning_rate": 2.6176192115379494e-06,
1923
+ "loss": 0.2176,
1924
+ "step": 269
1925
+ },
1926
+ {
1927
+ "epoch": 0.99,
1928
+ "grad_norm": 1.220258552427881,
1929
+ "learning_rate": 2.602925716839795e-06,
1930
+ "loss": 0.2131,
1931
+ "step": 270
1932
+ },
1933
+ {
1934
+ "epoch": 1.0,
1935
+ "grad_norm": 1.3301323985426015,
1936
+ "learning_rate": 2.588228659764632e-06,
1937
+ "loss": 0.2244,
1938
+ "step": 271
1939
+ },
1940
+ {
1941
+ "epoch": 1.0,
1942
+ "grad_norm": 1.2313785507924382,
1943
+ "learning_rate": 2.573528548994449e-06,
1944
+ "loss": 0.2192,
1945
+ "step": 272
1946
+ },
1947
+ {
1948
+ "epoch": 1.0,
1949
+ "eval_loss": 0.22680288553237915,
1950
+ "eval_runtime": 1744.6696,
1951
+ "eval_samples_per_second": 1.325,
1952
+ "eval_steps_per_second": 0.074,
1953
+ "step": 272
1954
+ }
1955
+ ],
1956
+ "logging_steps": 1,
1957
+ "max_steps": 544,
1958
+ "num_input_tokens_seen": 0,
1959
+ "num_train_epochs": 2,
1960
+ "save_steps": 272,
1961
+ "total_flos": 256045146439680.0,
1962
+ "train_batch_size": 2,
1963
+ "trial_name": null,
1964
+ "trial_params": null
1965
+ }
checkpoint-272/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01a4c76e5fdc09ec01dc7e8ead7778553f5e617c35ba83b4354ef7a547fbf2ae
3
+ size 7352
checkpoint-272/zero_to_fp32.py ADDED
@@ -0,0 +1,592 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _has_callable(obj, fn):
252
+ attr = getattr(obj, fn, None)
253
+ return callable(attr)
254
+
255
+
256
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
257
+ param_shapes = zero_model_states[0].param_shapes
258
+
259
+ # Reconstruction protocol:
260
+ #
261
+ # XXX: document this
262
+
263
+ if debug:
264
+ for i in range(world_size):
265
+ for j in range(len(fp32_flat_groups[0])):
266
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
267
+
268
+ # XXX: memory usage doubles here (zero2)
269
+ num_param_groups = len(fp32_flat_groups[0])
270
+ merged_single_partition_of_fp32_groups = []
271
+ for i in range(num_param_groups):
272
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
273
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
274
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
275
+ avail_numel = sum(
276
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
277
+
278
+ if debug:
279
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
280
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
281
+ # not asserting if there is a mismatch due to possible padding
282
+ print(f"Have {avail_numel} numels to process.")
283
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
284
+
285
+ # params
286
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
287
+ # out-of-core computing solution
288
+ total_numel = 0
289
+ total_params = 0
290
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
291
+ offset = 0
292
+ avail_numel = full_single_fp32_vector.numel()
293
+ for name, shape in shapes.items():
294
+
295
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
296
+ total_numel += unpartitioned_numel
297
+ total_params += 1
298
+
299
+ if debug:
300
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
301
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
302
+ offset += unpartitioned_numel
303
+
304
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
305
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
306
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
307
+ # live optimizer object, so we are checking that the numbers are within the right range
308
+ align_to = 2 * world_size
309
+
310
+ def zero2_align(x):
311
+ return align_to * math.ceil(x / align_to)
312
+
313
+ if debug:
314
+ print(f"original offset={offset}, avail_numel={avail_numel}")
315
+
316
+ offset = zero2_align(offset)
317
+ avail_numel = zero2_align(avail_numel)
318
+
319
+ if debug:
320
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
321
+
322
+ # Sanity check
323
+ if offset != avail_numel:
324
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
325
+
326
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
327
+
328
+
329
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
330
+ state_dict = OrderedDict()
331
+
332
+ # buffers
333
+ buffers = zero_model_states[0].buffers
334
+ state_dict.update(buffers)
335
+ if debug:
336
+ print(f"added {len(buffers)} buffers")
337
+
338
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
339
+
340
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
341
+
342
+ # recover shared parameters
343
+ for pair in zero_model_states[0].shared_params:
344
+ if pair[1] in state_dict:
345
+ state_dict[pair[0]] = state_dict[pair[1]]
346
+
347
+ return state_dict
348
+
349
+
350
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
351
+ remainder = unpartitioned_numel % world_size
352
+ padding_numel = (world_size - remainder) if remainder else 0
353
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
354
+ return partitioned_numel, padding_numel
355
+
356
+
357
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
358
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
359
+ return
360
+
361
+ if debug:
362
+ for i in range(world_size):
363
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
364
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
365
+
366
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
367
+ wanted_params = len(frozen_param_shapes)
368
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
369
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
370
+ print(f'Frozen params: Have {avail_numel} numels to process.')
371
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
372
+
373
+ total_params = 0
374
+ total_numel = 0
375
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
376
+ total_params += 1
377
+ unpartitioned_numel = shape.numel()
378
+ total_numel += unpartitioned_numel
379
+
380
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
381
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
382
+
383
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
384
+
385
+ if debug:
386
+ print(
387
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
388
+ )
389
+
390
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
391
+
392
+
393
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
394
+ param_shapes = zero_model_states[0].param_shapes
395
+ avail_numel = fp32_flat_groups[0].numel() * world_size
396
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
397
+ # param, re-consolidating each param, while dealing with padding if any
398
+
399
+ # merge list of dicts, preserving order
400
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
401
+
402
+ if debug:
403
+ for i in range(world_size):
404
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
405
+
406
+ wanted_params = len(param_shapes)
407
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
408
+ # not asserting if there is a mismatch due to possible padding
409
+ avail_numel = fp32_flat_groups[0].numel() * world_size
410
+ print(f"Trainable params: Have {avail_numel} numels to process.")
411
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
412
+
413
+ # params
414
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
415
+ # out-of-core computing solution
416
+ offset = 0
417
+ total_numel = 0
418
+ total_params = 0
419
+ for name, shape in param_shapes.items():
420
+
421
+ unpartitioned_numel = shape.numel()
422
+ total_numel += unpartitioned_numel
423
+ total_params += 1
424
+
425
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
426
+
427
+ if debug:
428
+ print(
429
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
430
+ )
431
+
432
+ # XXX: memory usage doubles here
433
+ state_dict[name] = torch.cat(
434
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
435
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
436
+ offset += partitioned_numel
437
+
438
+ offset *= world_size
439
+
440
+ # Sanity check
441
+ if offset != avail_numel:
442
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
443
+
444
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
445
+
446
+
447
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
448
+ state_dict = OrderedDict()
449
+
450
+ # buffers
451
+ buffers = zero_model_states[0].buffers
452
+ state_dict.update(buffers)
453
+ if debug:
454
+ print(f"added {len(buffers)} buffers")
455
+
456
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
457
+
458
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
459
+
460
+ # recover shared parameters
461
+ for pair in zero_model_states[0].shared_params:
462
+ if pair[1] in state_dict:
463
+ state_dict[pair[0]] = state_dict[pair[1]]
464
+
465
+ return state_dict
466
+
467
+
468
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
469
+ """
470
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
471
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
472
+ via a model hub.
473
+
474
+ Args:
475
+ - ``checkpoint_dir``: path to the desired checkpoint folder
476
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
477
+
478
+ Returns:
479
+ - pytorch ``state_dict``
480
+
481
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
482
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
483
+ the checkpoint.
484
+
485
+ A typical usage might be ::
486
+
487
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
488
+ # do the training and checkpoint saving
489
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
490
+ model = model.cpu() # move to cpu
491
+ model.load_state_dict(state_dict)
492
+ # submit to model hub or save the model to share with others
493
+
494
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
495
+ application. i.e. you will need to re-initialize the deepspeed engine, since
496
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
497
+
498
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
499
+
500
+ """
501
+ if tag is None:
502
+ latest_path = os.path.join(checkpoint_dir, 'latest')
503
+ if os.path.isfile(latest_path):
504
+ with open(latest_path, 'r') as fd:
505
+ tag = fd.read().strip()
506
+ else:
507
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
508
+
509
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
510
+
511
+ if not os.path.isdir(ds_checkpoint_dir):
512
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
513
+
514
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
515
+
516
+
517
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
518
+ """
519
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
520
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
521
+
522
+ Args:
523
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
524
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
525
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
526
+ """
527
+
528
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
529
+ print(f"Saving fp32 state dict to {output_file}")
530
+ torch.save(state_dict, output_file)
531
+
532
+
533
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
534
+ """
535
+ 1. Put the provided model to cpu
536
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
537
+ 3. Load it into the provided model
538
+
539
+ Args:
540
+ - ``model``: the model object to update
541
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
542
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
543
+
544
+ Returns:
545
+ - ``model`: modified model
546
+
547
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
548
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
549
+ conveniently placed for you in the checkpoint folder.
550
+
551
+ A typical usage might be ::
552
+
553
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
554
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
555
+ # submit to model hub or save the model to share with others
556
+
557
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
558
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
559
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
560
+
561
+ """
562
+ logger.info(f"Extracting fp32 weights")
563
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
564
+
565
+ logger.info(f"Overwriting model with fp32 weights")
566
+ model = model.cpu()
567
+ model.load_state_dict(state_dict, strict=False)
568
+
569
+ return model
570
+
571
+
572
+ if __name__ == "__main__":
573
+
574
+ parser = argparse.ArgumentParser()
575
+ parser.add_argument("checkpoint_dir",
576
+ type=str,
577
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
578
+ parser.add_argument(
579
+ "output_file",
580
+ type=str,
581
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
582
+ parser.add_argument("-t",
583
+ "--tag",
584
+ type=str,
585
+ default=None,
586
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
587
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
588
+ args = parser.parse_args()
589
+
590
+ debug = args.debug
591
+
592
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
checkpoint-544/config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "meta-math/MetaMath-Mistral-7B",
3
+ "architectures": [
4
+ "MistralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 14336,
13
+ "max_position_embeddings": 32768,
14
+ "model_type": "mistral",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 32,
17
+ "num_key_value_heads": 8,
18
+ "rms_norm_eps": 1e-05,
19
+ "rope_theta": 10000.0,
20
+ "sliding_window": 4096,
21
+ "tie_word_embeddings": false,
22
+ "torch_dtype": "bfloat16",
23
+ "transformers_version": "4.38.2",
24
+ "use_cache": false,
25
+ "vocab_size": 32001
26
+ }
checkpoint-544/generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "do_sample": true,
5
+ "eos_token_id": 2,
6
+ "transformers_version": "4.38.2"
7
+ }
checkpoint-544/global_step544/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0b635a6f6c93873bb79a1f6f7e80dcca3787ce0fda8d4098c2d40359e2fa073
3
+ size 4831618059
checkpoint-544/global_step544/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b42f03ac86e8e2a33c86c2e5202e8c4acdd6dc200c2f8c9a6c8e50f0318529df
3
+ size 4831618059
checkpoint-544/global_step544/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c92391ed04ed2926f1f28fdc573122425756b249bc2d21b2851b78baea89cd3b
3
+ size 4831618059
checkpoint-544/global_step544/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b2be3bc10a6a7a2dc37c52a0587e3fc56976e3e13b2298ddde6af69826afeeb
3
+ size 4831618059
checkpoint-544/global_step544/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9fdf1bf6bfe56ee728ffa31b8604f170adb5a5980a8b24f4aa662dfcd471d4f4
3
+ size 4831618059
checkpoint-544/global_step544/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3684e3dd7f9c957ee35cc90c43f7ff56a82ab875b36af71f12eb184e60b603c3
3
+ size 4831618059
checkpoint-544/global_step544/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:78c2672a287caac96da9b241ec70d12afbb0cf5d4540829c5f52d7fff6fa98a8
3
+ size 4831618059
checkpoint-544/global_step544/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed24fdc0dc351ee4c1ad70b88af052fbf700353644b65b86afd6910ce918f61e
3
+ size 4831618059
checkpoint-544/global_step544/bf16_zero_pp_rank_8_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ebb6b14e237e3d7ee8c339b87f536906ab23894cfd3c6ef4496c89e4053394a
3
+ size 4831618059
checkpoint-544/global_step544/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05f780232f1fbb656afded0ffeeb734c028ac6960f56536fb5bb144e06343358
3
+ size 153829