--- license: apache-2.0 base_model: meta-math/MetaMath-Mistral-7B tags: - axolotl - generated_from_trainer model-index: - name: EulerMath-Mistral-7B results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: meta-math/MetaMath-Mistral-7B model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer is_mistral_derived_model: true load_in_8bit: false load_in_4bit: false strict: false chat_template: alpaca datasets: - path: microsoft/orca-math-word-problems-200k type: alpaca_chat.load_qa conversation: alpaca - path: TIGER-Lab/MathInstruct type: alpaca conversation: alpaca dataset_prepared_path: last_run_prepared val_set_size: 0.005 #val_set_size: 0.0 output_dir: ./EulerMath-Mistral-7B-model sequence_len: 8192 sample_packing: true pad_to_sequence_len: true eval_sample_packing: false wandb_project: Euler wandb_entity: wandb_watch: wandb_name: wandb_log_model: hub_model_id: Weyaxi/EulerMath-Mistral-7B save_safetensors: true gradient_accumulation_steps: 4 micro_batch_size: 2 # changed num_epochs: 2 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.000005 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 4 # changed eval_table_size: eval_table_max_new_tokens: 128 saves_per_epoch: 1 # changed debug: deepspeed: zero3_bf16.json weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" ```

# EulerMath-Mistral-7B This model is a fine-tuned version of [meta-math/MetaMath-Mistral-7B](https://huggingface.co/meta-math/MetaMath-Mistral-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1956 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 9 - gradient_accumulation_steps: 4 - total_train_batch_size: 72 - total_eval_batch_size: 18 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.707 | 0.0 | 1 | 0.9061 | | 0.3011 | 0.25 | 68 | 0.3263 | | 0.2585 | 0.5 | 136 | 0.2836 | | 0.2352 | 0.75 | 204 | 0.2544 | | 0.2192 | 1.0 | 272 | 0.2268 | | 0.1527 | 1.23 | 340 | 0.2144 | | 0.1452 | 1.48 | 408 | 0.2032 | | 0.144 | 1.73 | 476 | 0.1970 | | 0.1441 | 1.98 | 544 | 0.1956 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.2+cu118 - Datasets 2.18.0 - Tokenizers 0.15.0