--- library_name: peft tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy base_model: NousResearch/Llama-2-7b-hf model-index: - name: billm-llama-7b-conll03-ner results: [] --- # billm-llama-7b-conll03-ner This model is a fine-tuned version of [NousResearch/Llama-2-7b-hf](https://huggingface.co/NousResearch/Llama-2-7b-hf) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1740 - Precision: 0.9207 - Recall: 0.9361 - F1: 0.9283 - Accuracy: 0.9857 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.049 | 1.0 | 1756 | 0.0956 | 0.9083 | 0.9254 | 0.9168 | 0.9841 | | 0.0199 | 2.0 | 3512 | 0.0920 | 0.9162 | 0.9254 | 0.9208 | 0.9846 | | 0.0093 | 3.0 | 5268 | 0.1172 | 0.9215 | 0.9325 | 0.9270 | 0.9856 | | 0.0037 | 4.0 | 7024 | 0.1428 | 0.9207 | 0.9361 | 0.9283 | 0.9857 | | 0.0013 | 5.0 | 8780 | 0.1642 | 0.9187 | 0.9346 | 0.9266 | 0.9854 | | 0.0007 | 6.0 | 10536 | 0.1724 | 0.9202 | 0.9368 | 0.9284 | 0.9857 | | 0.0005 | 7.0 | 12292 | 0.1729 | 0.9205 | 0.9364 | 0.9284 | 0.9858 | | 0.0004 | 8.0 | 14048 | 0.1736 | 0.9214 | 0.9368 | 0.9290 | 0.9858 | | 0.0003 | 9.0 | 15804 | 0.1737 | 0.9208 | 0.9359 | 0.9283 | 0.9857 | | 0.0003 | 10.0 | 17560 | 0.1740 | 0.9207 | 0.9361 | 0.9283 | 0.9857 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.0.1 - Datasets 2.16.0 - Tokenizers 0.15.0