File size: 1,278 Bytes
105dcd3
 
 
 
 
 
 
 
 
 
 
 
 
 
8b3d0ed
 
 
 
d74053c
 
8b3d0ed
 
 
 
 
a8c2bac
8b3d0ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8c2bac
8b3d0ed
 
 
 
 
 
 
 
 
 
 
 
7ea94ee
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
---
license: cc-by-4.0
language:
- hi
base_model:
- parthiv11/stt_hi_conformer_ctc_large_v2
tags:
- speech_recognition
- entity_tagging
- dialect_prediction
- gender
- age
- intent
---
# This speech tagger performs transcription for Hindi, annotates key entities, predict speaker age, dialiect and intent.

Model is suitable for voiceAI applications, real-time and offline.



## Model Details

- **Model type**: NeMo ASR
- **Architecture**: Conformer CTC
- **Language**: English
- **Training data**: AI4Bharat IndicVoices Punjabi V1 and V2 dataset
- **Performance metrics**: [Metrics]

## Usage

To use this model, you need to install the NeMo library:

```bash
pip install nemo_toolkit
```

### How to run

```python
import nemo.collections.asr as nemo_asr

# Step 1: Load the ASR model from Hugging Face
model_name = 'WhissleAI/speech-tagger_hi_ctc_meta'
asr_model = nemo_asr.models.EncDecCTCModel.from_pretrained(model_name)

# Step 2: Provide the path to your audio file
audio_file_path = '/path/to/your/audio_file.wav'

# Step 3: Transcribe the audio
transcription = asr_model.transcribe(paths2audio_files=[audio_file_path])
print(f'Transcription: {transcription[0]}')
```

Dataset is from AI4Bharat IndicVoices Hindi V1 and V2 dataset.

https://indicvoices.ai4bharat.org/