File size: 8,748 Bytes
2908489 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import torch
import torch.amp.autocast_mode
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
import os
import sys
import logging
import warnings
import argparse
from PIL import Image
from pathlib import Path
from tqdm import tqdm
from torch import nn
from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM
from typing import List, Union
# Constants
CLIP_PATH = "google/siglip-so400m-patch14-384"
VLM_PROMPT = "A descriptive caption for this image:\n"
MODEL_PATH = "unsloth/Meta-Llama-3.1-8B-bnb-4bit"
CHECKPOINT_PATH = Path("wpkklhc6")
IMAGE_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.bmp', '.webp')
warnings.filterwarnings("ignore", category=UserWarning)
logging.getLogger("transformers").setLevel(logging.ERROR)
def setup(rank, world_size):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12355'
dist.init_process_group("nccl", rank=rank, world_size=world_size)
def cleanup():
dist.destroy_process_group()
class ImageAdapter(nn.Module):
def __init__(self, input_features: int, output_features: int):
super().__init__()
self.linear1 = nn.Linear(input_features, output_features)
self.activation = nn.GELU()
self.linear2 = nn.Linear(output_features, output_features)
def forward(self, vision_outputs: torch.Tensor):
return self.linear2(self.activation(self.linear1(vision_outputs)))
def load_models(rank):
print(f"Loading CLIP π on GPU {rank}")
clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)
clip_model = AutoModel.from_pretrained(CLIP_PATH).vision_model.eval().requires_grad_(False).to(rank)
print(f"Loading tokenizer πͺ on GPU {rank}")
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, use_fast=False)
assert isinstance(tokenizer, (PreTrainedTokenizer, PreTrainedTokenizerFast)), f"Tokenizer is of type {type(tokenizer)}"
print(f"Loading LLM π€ on GPU {rank}")
text_model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map={"": rank}, torch_dtype=torch.bfloat16).eval()
print(f"Loading image adapter πΌοΈ on GPU {rank}")
image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size)
image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location=f"cuda:{rank}", weights_only=True))
image_adapter.eval().to(rank)
return clip_processor, clip_model, tokenizer, text_model, image_adapter
@torch.no_grad()
def stream_chat(input_images: List[Image.Image], batch_size: int, pbar: tqdm, models: tuple, rank: int) -> List[str]:
clip_processor, clip_model, tokenizer, text_model, image_adapter = models
torch.cuda.empty_cache()
all_captions = []
for i in range(0, len(input_images), batch_size):
batch = input_images[i:i+batch_size]
try:
images = clip_processor(images=batch, return_tensors='pt', padding=True).pixel_values.to(rank)
except ValueError as e:
print(f"Error processing image batch: {e}")
print("Skipping this batch and continuing...")
continue
with torch.amp.autocast_mode.autocast(rank, enabled=True):
vision_outputs = clip_model(pixel_values=images, output_hidden_states=True)
image_features = vision_outputs.hidden_states[-2]
embedded_images = image_adapter(image_features).to(dtype=torch.bfloat16)
prompt = tokenizer.encode(VLM_PROMPT, return_tensors='pt')
prompt_embeds = text_model.model.embed_tokens(prompt.to(rank)).to(dtype=torch.bfloat16)
embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=rank, dtype=torch.int64)).to(dtype=torch.bfloat16)
inputs_embeds = torch.cat([
embedded_bos.expand(embedded_images.shape[0], -1, -1),
embedded_images,
prompt_embeds.expand(embedded_images.shape[0], -1, -1),
], dim=1).to(dtype=torch.bfloat16)
input_ids = torch.cat([
torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long).expand(embedded_images.shape[0], -1),
torch.zeros((embedded_images.shape[0], embedded_images.shape[1]), dtype=torch.long),
prompt.expand(embedded_images.shape[0], -1),
], dim=1).to(rank)
attention_mask = torch.ones_like(input_ids)
generate_ids = text_model.generate(
input_ids=input_ids,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
max_new_tokens=300,
do_sample=True,
top_k=10,
temperature=0.5,
)
generate_ids = generate_ids[:, input_ids.shape[1]:]
for ids in generate_ids:
caption = tokenizer.decode(ids[:-1] if ids[-1] == tokenizer.eos_token_id else ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
caption = caption.replace('<|end_of_text|>', '').replace('<|finetune_right_pad_id|>', '').strip()
all_captions.append(caption)
if pbar and rank == 0:
pbar.update(len(batch))
return all_captions
def process_directory(rank, world_size, input_dir: Path, output_dir: Path, batch_size: int, models: tuple):
output_dir.mkdir(parents=True, exist_ok=True)
image_files = [f for f in input_dir.iterdir() if f.suffix.lower() in IMAGE_EXTENSIONS]
images_to_process = [f for f in image_files if not (output_dir / f"{f.stem}.txt").exists()]
if not images_to_process:
if rank == 0:
print("No new images to process.")
return
# Distribute images across GPUs
images_per_gpu = len(images_to_process) // world_size
start_idx = rank * images_per_gpu
end_idx = start_idx + images_per_gpu if rank < world_size - 1 else len(images_to_process)
gpu_images = images_to_process[start_idx:end_idx]
if rank == 0:
pbar = tqdm(total=len(images_to_process), desc="Processing images", unit="image")
else:
pbar = None
for i in range(0, len(gpu_images), batch_size):
batch_files = gpu_images[i:i+batch_size]
batch_images = [Image.open(f).convert('RGB') for f in batch_files]
captions = stream_chat(batch_images, batch_size, pbar, models, rank)
for file, caption in zip(batch_files, captions):
with open(output_dir / f"{file.stem}.txt", 'w', encoding='utf-8') as f:
f.write(caption)
for img in batch_images:
img.close()
if rank == 0:
pbar.close()
def parse_arguments():
parser = argparse.ArgumentParser(description="Process images and generate captions.")
parser.add_argument("input", nargs='+', help="Input image file or directory (or multiple directories)")
parser.add_argument("--output", help="Output directory (optional)")
parser.add_argument("--bs", type=int, default=4, help="Batch size (default: 4)")
return parser.parse_args()
def run(rank, world_size, args):
setup(rank, world_size)
input_paths = [Path(input_path) for input_path in args.input]
batch_size = args.bs
models = load_models(rank)
for input_path in input_paths:
if input_path.is_file() and input_path.suffix.lower() in IMAGE_EXTENSIONS:
if rank == 0:
output_path = input_path.with_suffix('.txt')
print(f"Processing single image ποΈ: {input_path.name}")
with tqdm(total=1, desc="Processing image", unit="image") as pbar:
captions = stream_chat([Image.open(input_path).convert('RGB')], 1, pbar, models, rank)
with open(output_path, 'w', encoding='utf-8') as f:
f.write(captions[0])
print(f"Output saved to {output_path}")
elif input_path.is_dir():
output_path = Path(args.output) if args.output else input_path
if rank == 0:
print(f"Processing directory π: {input_path}")
print(f"Output directory π¦: {output_path}")
print(f"Batch size ποΈ: {batch_size}")
process_directory(rank, world_size, input_path, output_path, batch_size, models)
else:
if rank == 0:
print(f"Invalid input: {input_path}")
print("Skipping...")
cleanup()
def main():
args = parse_arguments()
world_size = torch.cuda.device_count()
if world_size > 1:
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
else:
run(0, 1, args)
if __name__ == "__main__":
main()
|