Wi-zz commited on
Commit
7033d9d
Β·
verified Β·
1 Parent(s): b3632d5

Upload app.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. app.py +60 -124
app.py CHANGED
@@ -25,13 +25,17 @@ from pathlib import Path
25
  from tqdm import tqdm
26
  from torch import nn
27
  from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM
28
- from typing import List
29
 
30
- CLIP_PATH = "google/siglip-so400m-patch14-384"
 
31
  VLM_PROMPT = "A descriptive caption for this image:\n"
32
  MODEL_PATH = "unsloth/Meta-Llama-3.1-8B-bnb-4bit"
33
  CHECKPOINT_PATH = Path("wpkklhc6")
 
 
34
  warnings.filterwarnings("ignore", category=UserWarning)
 
35
 
36
  class ImageAdapter(nn.Module):
37
  def __init__(self, input_features: int, output_features: int):
@@ -41,72 +45,53 @@ class ImageAdapter(nn.Module):
41
  self.linear2 = nn.Linear(output_features, output_features)
42
 
43
  def forward(self, vision_outputs: torch.Tensor):
44
- x = self.linear1(vision_outputs)
45
- x = self.activation(x)
46
- x = self.linear2(x)
47
- return x
48
-
49
- # Load CLIP
50
- print("Loading CLIP πŸ“Ž")
51
- clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)
52
- clip_model = AutoModel.from_pretrained(CLIP_PATH)
53
- clip_model = clip_model.vision_model
54
- clip_model.eval()
55
- clip_model.requires_grad_(False)
56
- clip_model.to("cuda")
57
-
58
- # Tokenizer
59
- print("Loading tokenizer πŸͺ™")
60
- tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, use_fast=False)
61
- assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast), f"Tokenizer is of type {type(tokenizer)}"
62
-
63
- # LLM
64
- print("Loading LLM πŸ€–")
65
- logging.getLogger("transformers").setLevel(logging.ERROR)
66
- text_model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", torch_dtype=torch.bfloat16)
67
- text_model.eval()
68
 
69
- # Image Adapter
70
- print("Loading image adapter πŸ–ΌοΈ")
71
- image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size)
72
- image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu", weights_only=True))
73
- image_adapter.eval()
74
- image_adapter.to("cuda")
75
 
76
  @torch.no_grad()
77
- def stream_chat(input_images: List[Image.Image], batch_size=4, pbar=None):
 
78
  torch.cuda.empty_cache()
79
  all_captions = []
80
 
81
- if not isinstance(input_images, list):
82
- input_images = [input_images]
83
-
84
  for i in range(0, len(input_images), batch_size):
85
  batch = input_images[i:i+batch_size]
86
 
87
- # Preprocess image batch
88
  try:
89
- images = clip_processor(images=batch, return_tensors='pt', padding=True).pixel_values
90
  except ValueError as e:
91
  print(f"Error processing image batch: {e}")
92
  print("Skipping this batch and continuing...")
93
  continue
94
 
95
- images = images.to('cuda')
96
-
97
- # Embed image batch
98
  with torch.amp.autocast_mode.autocast('cuda', enabled=True):
99
  vision_outputs = clip_model(pixel_values=images, output_hidden_states=True)
100
  image_features = vision_outputs.hidden_states[-2]
101
- embedded_images = image_adapter(image_features)
102
- embedded_images = embedded_images.to(dtype=torch.bfloat16)
103
 
104
- # Embed prompt
105
  prompt = tokenizer.encode(VLM_PROMPT, return_tensors='pt')
106
  prompt_embeds = text_model.model.embed_tokens(prompt.to('cuda')).to(dtype=torch.bfloat16)
107
  embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=text_model.device, dtype=torch.int64)).to(dtype=torch.bfloat16)
108
 
109
- # Construct prompts
110
  inputs_embeds = torch.cat([
111
  embedded_bos.expand(embedded_images.shape[0], -1, -1),
112
  embedded_images,
@@ -131,86 +116,38 @@ def stream_chat(input_images: List[Image.Image], batch_size=4, pbar=None):
131
  temperature=0.5,
132
  )
133
 
134
- if pbar:
135
- pbar.update(len(batch))
136
-
137
- # Trim off the prompt
138
  generate_ids = generate_ids[:, input_ids.shape[1]:]
139
 
140
  for ids in generate_ids:
141
- if ids[-1] == tokenizer.eos_token_id:
142
- ids = ids[:-1]
143
- caption = tokenizer.decode(ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
144
- # Remove any remaining special tokens
145
  caption = caption.replace('<|end_of_text|>', '').replace('<|finetune_right_pad_id|>', '').strip()
146
  all_captions.append(caption)
147
 
148
- return all_captions
149
-
150
- def preprocess_image(img):
151
- return img.convert('RGBA')
152
-
153
- def process_image(image_path, output_path, pbar=None):
154
- try:
155
- with Image.open(image_path) as img:
156
- # Convert image to RGB
157
- img = img.convert('RGB')
158
- caption = stream_chat([img], pbar=pbar)[0]
159
- with open(output_path, 'w', encoding='utf-8') as f:
160
- f.write(caption)
161
- except Exception as e:
162
- print(f"Error processing {image_path}: {e}")
163
- if pbar:
164
- pbar.update(1)
165
- return
166
-
167
- with Image.open(image_path) as img:
168
- # Pass the image as a list to stream_chat
169
- caption = stream_chat([img], pbar=pbar)[0] # Get the first (and only) caption
170
-
171
- with open(output_path, 'w', encoding='utf-8') as f:
172
- f.write(caption)
173
-
174
- def process_directory(input_dir, output_dir, batch_size):
175
- input_path = Path(input_dir)
176
- output_path = Path(output_dir)
177
- output_path.mkdir(parents=True, exist_ok=True)
178
 
179
- image_extensions = ('.jpg', '.jpeg', '.png', '.bmp', '.webp')
180
- image_files = [f for f in input_path.iterdir() if f.suffix.lower() in image_extensions]
181
 
182
- # Create a list to store images that need processing
183
- images_to_process = []
 
 
184
 
185
- # Check which images need processing
186
- for file in image_files:
187
- output_file = output_path / (file.stem + '.txt')
188
- if not output_file.exists():
189
- images_to_process.append(file)
190
- else:
191
- print(f"Skipping {file.name} - Caption already exists")
192
 
193
- # Process images in batches
194
  with tqdm(total=len(images_to_process), desc="Processing images", unit="image") as pbar:
195
  for i in range(0, len(images_to_process), batch_size):
196
  batch_files = images_to_process[i:i+batch_size]
197
- batch_images = []
198
- for f in batch_files:
199
- try:
200
- img = Image.open(f).convert('RGB')
201
- batch_images.append(img)
202
- except Exception as e:
203
- print(f"Error opening {f}: {e}")
204
- continue
205
-
206
- if batch_images:
207
- captions = stream_chat(batch_images, batch_size, pbar)
208
- for file, caption in zip(batch_files, captions):
209
- output_file = output_path / (file.stem + '.txt')
210
- with open(output_file, 'w', encoding='utf-8') as f:
211
- f.write(caption)
212
-
213
- # Close the image files
214
  for img in batch_images:
215
  img.close()
216
 
@@ -221,31 +158,27 @@ def parse_arguments():
221
  parser.add_argument("--bs", type=int, default=4, help="Batch size (default: 4)")
222
  return parser.parse_args()
223
 
224
- def is_image_file(file_path):
225
- image_extensions = ('.jpg', '.jpeg', '.png', '.bmp', '.webp')
226
- return Path(file_path).suffix.lower() in image_extensions
227
-
228
- # Main execution
229
- if __name__ == "__main__":
230
  args = parse_arguments()
231
  input_paths = [Path(input_path) for input_path in args.input]
232
  batch_size = args.bs
 
233
 
234
  for input_path in input_paths:
235
- if input_path.is_file() and is_image_file(input_path):
236
- # Single file processing
237
  output_path = input_path.with_suffix('.txt')
238
  print(f"Processing single image 🎞️: {input_path.name}")
239
  with tqdm(total=1, desc="Processing image", unit="image") as pbar:
240
- process_image(input_path, output_path, pbar)
 
 
241
  print(f"Output saved to {output_path}")
242
  elif input_path.is_dir():
243
- # Directory processing
244
  output_path = Path(args.output) if args.output else input_path
245
  print(f"Processing directory πŸ“: {input_path}")
246
  print(f"Output directory πŸ“¦: {output_path}")
247
  print(f"Batch size πŸ—„οΈ: {batch_size}")
248
- process_directory(input_path, output_path, batch_size)
249
  else:
250
  print(f"Invalid input: {input_path}")
251
  print("Skipping...")
@@ -256,4 +189,7 @@ if __name__ == "__main__":
256
  print("For directory (same input/output): python app.py [directory] [--bs batch_size]")
257
  print("For directory (separate input/output): python app.py [directory] --output [output_directory] [--bs batch_size]")
258
  print("For multiple directories: python app.py [directory1] [directory2] ... [--output output_directory] [--bs batch_size]")
259
- sys.exit(1)
 
 
 
 
25
  from tqdm import tqdm
26
  from torch import nn
27
  from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM
28
+ from typing import List, Union
29
 
30
+ # Constants
31
+ CLIP_PATH = "OpenGVLab/InternViT-300M-448px"
32
  VLM_PROMPT = "A descriptive caption for this image:\n"
33
  MODEL_PATH = "unsloth/Meta-Llama-3.1-8B-bnb-4bit"
34
  CHECKPOINT_PATH = Path("wpkklhc6")
35
+ IMAGE_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.bmp', '.webp')
36
+
37
  warnings.filterwarnings("ignore", category=UserWarning)
38
+ logging.getLogger("transformers").setLevel(logging.ERROR)
39
 
40
  class ImageAdapter(nn.Module):
41
  def __init__(self, input_features: int, output_features: int):
 
45
  self.linear2 = nn.Linear(output_features, output_features)
46
 
47
  def forward(self, vision_outputs: torch.Tensor):
48
+ return self.linear2(self.activation(self.linear1(vision_outputs)))
49
+
50
+ def load_models():
51
+ print("Loading CLIP πŸ“Ž")
52
+ clip_processor = AutoProcessor.from_pretrained(CLIP_PATH, trust_remote_code=True)
53
+ clip_model = AutoModel.from_pretrained(CLIP_PATH, trust_remote_code=True).vision_model.eval().requires_grad_(False).to("cuda")
54
+
55
+ print("Loading tokenizer πŸͺ™")
56
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, use_fast=False)
57
+ assert isinstance(tokenizer, (PreTrainedTokenizer, PreTrainedTokenizerFast)), f"Tokenizer is of type {type(tokenizer)}"
58
+
59
+ print("Loading LLM πŸ€–")
60
+ text_model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", torch_dtype=torch.bfloat16).eval()
61
+
62
+ print("Loading image adapter πŸ–ΌοΈ")
63
+ image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size)
64
+ image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu", weights_only=True))
65
+ image_adapter.eval().to("cuda")
66
+
67
+ return clip_processor, clip_model, tokenizer, text_model, image_adapter
 
 
 
 
68
 
 
 
 
 
 
 
69
 
70
  @torch.no_grad()
71
+ def stream_chat(input_images: List[Image.Image], batch_size: int, pbar: tqdm, models: tuple) -> List[str]:
72
+ clip_processor, clip_model, tokenizer, text_model, image_adapter = models
73
  torch.cuda.empty_cache()
74
  all_captions = []
75
 
 
 
 
76
  for i in range(0, len(input_images), batch_size):
77
  batch = input_images[i:i+batch_size]
78
 
 
79
  try:
80
+ images = clip_processor(images=batch, return_tensors='pt', padding=True).pixel_values.to('cuda')
81
  except ValueError as e:
82
  print(f"Error processing image batch: {e}")
83
  print("Skipping this batch and continuing...")
84
  continue
85
 
 
 
 
86
  with torch.amp.autocast_mode.autocast('cuda', enabled=True):
87
  vision_outputs = clip_model(pixel_values=images, output_hidden_states=True)
88
  image_features = vision_outputs.hidden_states[-2]
89
+ embedded_images = image_adapter(image_features).to(dtype=torch.bfloat16)
 
90
 
 
91
  prompt = tokenizer.encode(VLM_PROMPT, return_tensors='pt')
92
  prompt_embeds = text_model.model.embed_tokens(prompt.to('cuda')).to(dtype=torch.bfloat16)
93
  embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=text_model.device, dtype=torch.int64)).to(dtype=torch.bfloat16)
94
 
 
95
  inputs_embeds = torch.cat([
96
  embedded_bos.expand(embedded_images.shape[0], -1, -1),
97
  embedded_images,
 
116
  temperature=0.5,
117
  )
118
 
 
 
 
 
119
  generate_ids = generate_ids[:, input_ids.shape[1]:]
120
 
121
  for ids in generate_ids:
122
+ caption = tokenizer.decode(ids[:-1] if ids[-1] == tokenizer.eos_token_id else ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
 
 
 
123
  caption = caption.replace('<|end_of_text|>', '').replace('<|finetune_right_pad_id|>', '').strip()
124
  all_captions.append(caption)
125
 
126
+ if pbar:
127
+ pbar.update(len(batch))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128
 
129
+ return all_captions
 
130
 
131
+ def process_directory(input_dir: Path, output_dir: Path, batch_size: int, models: tuple):
132
+ output_dir.mkdir(parents=True, exist_ok=True)
133
+ image_files = [f for f in input_dir.iterdir() if f.suffix.lower() in IMAGE_EXTENSIONS]
134
+ images_to_process = [f for f in image_files if not (output_dir / f"{f.stem}.txt").exists()]
135
 
136
+ if not images_to_process:
137
+ print("No new images to process.")
138
+ return
 
 
 
 
139
 
 
140
  with tqdm(total=len(images_to_process), desc="Processing images", unit="image") as pbar:
141
  for i in range(0, len(images_to_process), batch_size):
142
  batch_files = images_to_process[i:i+batch_size]
143
+ batch_images = [Image.open(f).convert('RGB') for f in batch_files]
144
+
145
+ captions = stream_chat(batch_images, batch_size, pbar, models)
146
+
147
+ for file, caption in zip(batch_files, captions):
148
+ with open(output_dir / f"{file.stem}.txt", 'w', encoding='utf-8') as f:
149
+ f.write(caption)
150
+
 
 
 
 
 
 
 
 
 
151
  for img in batch_images:
152
  img.close()
153
 
 
158
  parser.add_argument("--bs", type=int, default=4, help="Batch size (default: 4)")
159
  return parser.parse_args()
160
 
161
+ def main():
 
 
 
 
 
162
  args = parse_arguments()
163
  input_paths = [Path(input_path) for input_path in args.input]
164
  batch_size = args.bs
165
+ models = load_models()
166
 
167
  for input_path in input_paths:
168
+ if input_path.is_file() and input_path.suffix.lower() in IMAGE_EXTENSIONS:
 
169
  output_path = input_path.with_suffix('.txt')
170
  print(f"Processing single image 🎞️: {input_path.name}")
171
  with tqdm(total=1, desc="Processing image", unit="image") as pbar:
172
+ captions = stream_chat([Image.open(input_path).convert('RGB')], 1, pbar, models)
173
+ with open(output_path, 'w', encoding='utf-8') as f:
174
+ f.write(captions[0])
175
  print(f"Output saved to {output_path}")
176
  elif input_path.is_dir():
 
177
  output_path = Path(args.output) if args.output else input_path
178
  print(f"Processing directory πŸ“: {input_path}")
179
  print(f"Output directory πŸ“¦: {output_path}")
180
  print(f"Batch size πŸ—„οΈ: {batch_size}")
181
+ process_directory(input_path, output_path, batch_size, models)
182
  else:
183
  print(f"Invalid input: {input_path}")
184
  print("Skipping...")
 
189
  print("For directory (same input/output): python app.py [directory] [--bs batch_size]")
190
  print("For directory (separate input/output): python app.py [directory] --output [output_directory] [--bs batch_size]")
191
  print("For multiple directories: python app.py [directory1] [directory2] ... [--output output_directory] [--bs batch_size]")
192
+ sys.exit(1)
193
+
194
+ if __name__ == "__main__":
195
+ main()