--- library_name: transformers license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - audiofolder metrics: - accuracy - f1 - precision - recall model-index: - name: distilhubert-finetuned-babycry-v5 results: - task: name: Audio Classification type: audio-classification dataset: name: audiofolder type: audiofolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: accuracy: 0.782608695652174 - name: F1 type: f1 value: 0.6871686108165429 - name: Precision type: precision value: 0.6124763705103969 - name: Recall type: recall value: 0.782608695652174 --- # distilhubert-finetuned-babycry-v5 This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8441 - Accuracy: {'accuracy': 0.782608695652174} - F1: 0.6872 - Precision: 0.6125 - Recall: 0.7826 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:------:|:----:|:---------------:|:-------------------------------:|:------:|:---------:|:------:| | 0.7047 | 1.0870 | 25 | 0.9225 | {'accuracy': 0.782608695652174} | 0.6872 | 0.6125 | 0.7826 | | 0.6071 | 2.1739 | 50 | 0.9175 | {'accuracy': 0.782608695652174} | 0.6872 | 0.6125 | 0.7826 | | 0.6525 | 3.2609 | 75 | 0.8866 | {'accuracy': 0.782608695652174} | 0.6872 | 0.6125 | 0.7826 | | 0.6558 | 4.3478 | 100 | 0.8433 | {'accuracy': 0.782608695652174} | 0.6872 | 0.6125 | 0.7826 | | 0.5577 | 5.4348 | 125 | 0.8705 | {'accuracy': 0.782608695652174} | 0.6872 | 0.6125 | 0.7826 | | 0.7055 | 6.5217 | 150 | 0.8323 | {'accuracy': 0.782608695652174} | 0.6872 | 0.6125 | 0.7826 | | 0.6092 | 7.6087 | 175 | 0.8440 | {'accuracy': 0.782608695652174} | 0.6872 | 0.6125 | 0.7826 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1