update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: facebook/wav2vec2-large-robust-ft-libri-960h
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: wav2vec2-large-robust-ft-libri-960h-finetuned-ravdess-v2
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# wav2vec2-large-robust-ft-libri-960h-finetuned-ravdess-v2
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [facebook/wav2vec2-large-robust-ft-libri-960h](https://huggingface.co/facebook/wav2vec2-large-robust-ft-libri-960h) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 1.0280
|
21 |
+
- Accuracy: 0.6146
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 5e-05
|
41 |
+
- train_batch_size: 8
|
42 |
+
- eval_batch_size: 8
|
43 |
+
- seed: 42
|
44 |
+
- gradient_accumulation_steps: 4
|
45 |
+
- total_train_batch_size: 32
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- lr_scheduler_warmup_ratio: 0.1
|
49 |
+
- num_epochs: 20
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
55 |
+
| 2.0786 | 1.0 | 36 | 2.0692 | 0.1597 |
|
56 |
+
| 2.0578 | 2.0 | 72 | 2.0555 | 0.1979 |
|
57 |
+
| 1.9903 | 3.0 | 108 | 1.9172 | 0.2882 |
|
58 |
+
| 1.8052 | 4.0 | 144 | 1.7975 | 0.2951 |
|
59 |
+
| 1.7221 | 5.0 | 180 | 1.6602 | 0.4028 |
|
60 |
+
| 1.5773 | 6.0 | 216 | 1.6362 | 0.4479 |
|
61 |
+
| 1.4785 | 7.0 | 252 | 1.4675 | 0.4965 |
|
62 |
+
| 1.3828 | 8.0 | 288 | 1.3735 | 0.5 |
|
63 |
+
| 1.2352 | 9.0 | 324 | 1.2886 | 0.5278 |
|
64 |
+
| 1.159 | 10.0 | 360 | 1.2184 | 0.5521 |
|
65 |
+
| 1.073 | 11.0 | 396 | 1.1456 | 0.5556 |
|
66 |
+
| 1.0127 | 12.0 | 432 | 1.1864 | 0.5694 |
|
67 |
+
| 0.9374 | 13.0 | 468 | 1.1865 | 0.5625 |
|
68 |
+
| 0.8622 | 14.0 | 504 | 1.1745 | 0.5660 |
|
69 |
+
| 0.8704 | 15.0 | 540 | 1.1563 | 0.5694 |
|
70 |
+
| 0.8607 | 16.0 | 576 | 1.0466 | 0.5938 |
|
71 |
+
| 0.8228 | 17.0 | 612 | 1.0457 | 0.6007 |
|
72 |
+
| 0.8521 | 18.0 | 648 | 1.0280 | 0.6146 |
|
73 |
+
| 0.8248 | 19.0 | 684 | 1.0399 | 0.6146 |
|
74 |
+
| 0.7901 | 20.0 | 720 | 1.0402 | 0.6111 |
|
75 |
+
|
76 |
+
|
77 |
+
### Framework versions
|
78 |
+
|
79 |
+
- Transformers 4.31.0
|
80 |
+
- Pytorch 2.0.1+cu118
|
81 |
+
- Datasets 2.14.4
|
82 |
+
- Tokenizers 0.13.3
|