a2c-PandaReachDense-v2 / config.json
Winmodel's picture
Initial commit
3b984f6
raw
history blame
14.3 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f0ce741ad40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f0ce740bc00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 97212, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689100337743621171, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAqk4lP8aoe78xjB+/mSGhvfa6N79elTY/QIUhvwc1ir9sene959tDvzC9jD9qPBm/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA0gJQP9Kvp78W/pa/Zx1JvjsQZL/VRCY/7kyuv2ABqb+t3hG/B1DivwhdsD+ep5+/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACqTiU/xqh7vzGMH7+J4AO/OwaMvwtt1L+ZIaG99ro3v16VNj8AYTI/b4BgP619rz9AhSG/BzWKv2x6d71TdbK/zFpKv4zXCcDn20O/ML2MP2o8Gb+u+q+/l8OdP0OIBb+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.64573157 -0.983044 -0.6232329 ]\n [-0.07867736 -0.71769655 0.71321666]\n [-0.6309395 -1.0797433 -0.06041948]\n [-0.7650742 1.0995235 -0.5985781 ]]", "desired_goal": "[[ 0.81254303 -1.3100531 -1.1796291 ]\n [-0.19640122 -0.89087266 0.6494878 ]\n [-1.3617227 -1.3203545 -0.569804 ]\n [-1.7680672 1.3778391 -1.2473028 ]]", "observation": "[[ 0.64573157 -0.983044 -0.6232329 -0.5151449 -1.0939401 -1.6595777 ]\n [-0.07867736 -0.71769655 0.71321666 0.6967926 0.87695974 1.3710228 ]\n [-0.6309395 -1.0797433 -0.06041948 -1.3942055 -0.79044795 -2.153781 ]\n [-0.7650742 1.0995235 -0.5985781 -1.3748376 1.2325314 -0.52161044]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAIMcwO6kLGb5mVWQ+lYACvZpHgL0Rtio+ipUPPh/sCz6hE+g9Kw0JPudZDj7XrR4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.00269742 -0.14945854 0.22298202]\n [-0.03186091 -0.06263657 0.16671015]\n [ 0.14021888 0.13664292 0.11331869]\n [ 0.1338393 0.13901483 0.15496002]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.9028, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv/kRwqAjIJaMAWyUSzKMAXSUR0BykZLlFMIvdX2UKGgGR7/8+WSlnAZbaAdLMmgIR0Byj440dilSdX2UKGgGR7/6JoK2KEWZaAdLMmgIR0ByjXCMxXXAdX2UKGgGR7/1maDwpe/paAdLMmgIR0Byi1xm03OwdX2UKGgGR7/0ac7QswtbaAdLMmgIR0Bymdqxkd3jdX2UKGgGR7/7pYkmhM8HaAdLMmgIR0Byl9axHG0edX2UKGgGR7/5fGlyimEXaAdLMmgIR0BylbpyIYWMdX2UKGgGR7/6nJ1aGHpKaAdLMmgIR0Byk6TSsr/bdX2UKGgGR7/7mbXpW3jNaAdLMmgIR0ByoZo9LYf5dX2UKGgGR7/61iKBNEgGaAdLMmgIR0Byn57Uoa1kdX2UKGgGR7/5dj0+TvAoaAdLMmgIR0BynYZP2wmmdX2UKGgGR7/7NMTN+so2aAdLMmgIR0Bym3EbYK6XdX2UKGgGR7/9cH0K7ZnMaAdLMmgIR0Byqc5zYEntdX2UKGgGR7/0kZrHlwLmaAdLMmgIR0Byp8tdzGPxdX2UKGgGR7/0N/4IrvsraAdLMmgIR0Bypa36Q/5ddX2UKGgGR7/7ZU5uIhyKaAdLMmgIR0Byo5uMuOCHdX2UKGgGR7/8B/3FkxyoaAdLMmgIR0Byse7QLNOedX2UKGgGR7/01ByCFsYVaAdLMmgIR0Byr+vKU3XJdX2UKGgGR7/2h0ZFXq7iaAdLMmgIR0Byrc9t/FzddX2UKGgGR7/2rs0HhS9/aAdLMmgIR0Byq7vH93r2dX2UKGgGR7/4HHWBjFyaaAdLMmgIR0Byuh7CzkZKdX2UKGgGR7/4Ydp7CzkZaAdLMmgIR0ByuBnyup0fdX2UKGgGR7/5VHJ9y926aAdLMmgIR0BytfypaRp2dX2UKGgGR7/45eqrBCUpaAdLMmgIR0Bys+i35N48dX2UKGgGR7/1xdY4hllLaAdLMmgIR0Bywr8iwB5pdX2UKGgGR7/8NBv73wkPaAdLMmgIR0BywL3g1m8NdX2UKGgGR7/6g7HQyAQQaAdLMmgIR0ByvqCPIXCTdX2UKGgGR7/44L1EmY0EaAdLMmgIR0ByvIsSTQmedX2UKGgGR7/2usDGLk0aaAdLMmgIR0ByyvztkWhzdX2UKGgGR7/2UMb3oLXuaAdLMmgIR0ByyPhisny/dX2UKGgGR7//0OEug6EKaAdLMmgIR0Byxts7+1jRdX2UKGgGR7/4KYE4ecQRaAdLMmgIR0ByxMWAPNFCdX2UKGgGR7/65IH1OCXhaAdLMmgIR0By0xY9xIatdX2UKGgGR7/50Qf6oESvaAdLMmgIR0By0RM9KVY7dX2UKGgGR7/455VwPy08aAdLMmgIR0ByzvjdYW+HdX2UKGgGR7/1WYKIBRyfaAdLMmgIR0ByzOOFQEZBdX2UKGgGR7/8j+vQnhKlaAdLMmgIR0By24XgtOEedX2UKGgGR7/3vpQk5ZKWaAdLMmgIR0By2YCo0hvBdX2UKGgGR7/6qur6tT1kaAdLMmgIR0By12P2f02+dX2UKGgGR7/8OjEehf0FaAdLMmgIR0By1U9jgAIZdX2UKGgGR7/6PxMFlkH2aAdLMmgIR0By47pSrHU+dX2UKGgGR7/5nQ6ZH/cWaAdLMmgIR0By4bWAf+0gdX2UKGgGR7/8TrAxi5NHaAdLMmgIR0By35ri2lVMdX2UKGgGR7/95lvqC6H1aAdLMmgIR0By3YjRlYlqdX2UKGgGR7/9HpGFzuF6aAdLMmgIR0By67VqesgddX2UKGgGR7/3yw8nuy/saAdLMmgIR0By6bEAHVwxdX2UKGgGR7/6CZrpJPIoaAdLMmgIR0By55OtW+49dX2UKGgGR7/37pNbkfcOaAdLMmgIR0By5X3PAwfydX2UKGgGR7/++DBdld1MaAdLMmgIR0By9Dnmq5skdX2UKGgGR7/93xWkrPMTaAdLMmgIR0By8jb9If8udX2UKGgGR7/7/mxMWXTmaAdLMmgIR0By8BqCYkVvdX2UKGgGR7//BKxs2vSuaAdLMmgIR0By7gZhrnDBdX2UKGgGR7/5cxj8UEgXaAdLMmgIR0By/H6BRQ7+dX2UKGgGR7/7ktqYZ2pyaAdLMmgIR0By+njKgZjydX2UKGgGR7/5SaAnUlRhaAdLMmgIR0By+FzvJA+qdX2UKGgGR7/6tNJvo/zKaAdLMmgIR0By9kc81XNkdX2UKGgGR7/93Z9NN8E3aAdLMmgIR0BzBO5VfeDWdX2UKGgGR7/8/7Jnxri3aAdLMmgIR0BzAunNxEORdX2UKGgGR8AAZZr56+nJaAdLMmgIR0BzAMwrUb1idX2UKGgGR7/39GZuyeI3aAdLMmgIR0By/rbmEGqxdX2UKGgGR7//fa6BiCrcaAdLMmgIR0BzDPu0CzTndX2UKGgGR7/7xdt2s7uEaAdLMmgIR0BzCvoOhCdCdX2UKGgGR7/6K6J66asqaAdLMmgIR0BzCNyGSIP9dX2UKGgGR7/9mHP/rB0qaAdLMmgIR0BzBshr30wrdX2UKGgGR7/2BbfP5YYBaAdLMmgIR0BzFUQoTfzjdX2UKGgGR7/5ACOmzjWDaAdLMmgIR0BzE0DSw4bTdX2UKGgGR7/2fhESdvsJaAdLMmgIR0BzESSyMUAUdX2UKGgGR7/8pP2wmmcfaAdLMmgIR0BzDw+5e7cxdX2UKGgGR7/4gOz6ab4KaAdLMmgIR0BzHadEsrd4dX2UKGgGR7/68STQmeDnaAdLMmgIR0BzG6Mju8brdX2UKGgGR7/8bELpiZv2aAdLMmgIR0BzGYmKIi1RdX2UKGgGR7/1ZJ04iosJaAdLMmgIR0BzF3Qqqfe2dX2UKGgGR7/4wFxGUfPpaAdLMmgIR0BzKV6w+t8vdX2UKGgGR7/4YmCyyD7JaAdLMmgIR0BzJ18gIQe4dX2UKGgGR7//jlLeyiVTaAdLMmgIR0BzJUeEIw/QdX2UKGgGR7/8Anpjc2zfaAdLMmgIR0BzIzfIjnmrdX2UKGgGR7/7tRWLgn+iaAdLMmgIR0BzNuxX4j8ldX2UKGgGR7/3ZzHS4OMEaAdLMmgIR0BzNO3PRiPRdX2UKGgGR7/4gb6xgRbsaAdLMmgIR0BzMtaaCtihdX2UKGgGR7/3yFsYVIqcaAdLMmgIR0BzMMhxHXmOdX2UKGgGR7/4xHLA57w8aAdLMmgIR0BzREqwyIpIdX2UKGgGR7/5vgFX7tRfaAdLMmgIR0BzQktcv/R3dX2UKGgGR7/4PmknCwbEaAdLMmgIR0BzQDeLvTgEdX2UKGgGR7/30hRqGlANaAdLMmgIR0BzPifNA1NydX2UKGgGR7//3+dbxEv1aAdLMmgIR0BzUcjRlYlqdX2UKGgGR7/6OU6gdwNtaAdLMmgIR0BzT8mtyPuHdX2UKGgGR7/3gJ9iMHbAaAdLMmgIR0BzTbGCI1tPdX2UKGgGR7/0thmXgLqmaAdLMmgIR0BzS6QzUI9ldX2UKGgGR7/3ce4kNWluaAdLMmgIR0BzX6jCYTkAdX2UKGgGR7/2VRDTjNpuaAdLMmgIR0BzXamj0tiAdX2UKGgGR7/8sXaakRBeaAdLMmgIR0BzW5VDKHO9dX2UKGgGR7/8p1aGHpKSaAdLMmgIR0BzWYbxVhkRdX2UKGgGR7/6pa7mMfihaAdLMmgIR0BzbW/h2nsLdX2UKGgGR7/6OfZmI0qIaAdLMmgIR0Bza3AVO9FndX2UKGgGR7/42DL8rI5paAdLMmgIR0BzaVpTMqz7dX2UKGgGR7/3GNR3u/lAaAdLMmgIR0BzZ05Ke05VdX2UKGgGR7/6TkuHvc8DaAdLMmgIR0Bze0U47zTXdX2UKGgGR7/56JuVHFxXaAdLMmgIR0BzeUUh3aBadX2UKGgGR7/5KsZHd43WaAdLMmgIR0Bzdy2+fywwdX2UKGgGR7/5QhnrY5DJaAdLMmgIR0BzdR2HLzPKdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4860, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.21.0"}}