from dataclasses import dataclass import torch import torch.nn as nn from torch.nn import functional as F import math import inspect import os from hellaswag import render_example, iterate_examples from tqdm import tqdm from hf_configuration import ExGPTConfig from transformers import PreTrainedModel # ================================================== class CausalSelfAttention(nn.Module): def __init__(self, config): super().__init__() assert config.n_embd % config.n_head == 0 # key, query, value projection for all heads self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd) # output projection self.c_proj = nn.Linear(config.n_embd, config.n_embd) self.c_proj.NANOGPT_SCALE_INIT = 1 # a flag # regularization self.n_head = config.n_head self.n_embd = config.n_embd # not really a 'bias', more of a mask self.register_buffer('bias', torch.tril(torch.ones(config.block_size, config.block_size)) .view(1, 1, config.block_size, config.block_size)) # Batch, head, the table x2 รึ def forward(self, x): B, T, C = x.size() # batch, seq len, embed dim qkv = self.c_attn(x) # project first, reshape later for each heads q, k, v = qkv.split(self.n_embd, dim=2) k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) # begin the fk huge quadratic table # att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) # att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf')) # att = F.softmax(att, dim = -1) # y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs) y = F.scaled_dot_product_attention(q, k, v, is_causal=True) y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side # output projection out = self.c_proj(y) return out class MLP(nn.Module): "change it to SwiGLU" def __init__(self, config): super().__init__() self.gate = nn.Linear(config.n_embd, 4 * config.n_embd) self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd) self.silu = nn.SiLU() self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd) self.c_proj.NANOGPT_SCALE_INIT = 1 # a flag def forward(self, x): # x = self.c_fc(x) # x = self.gelu(x) # x = self.c_proj(x) x = self.c_proj(self.silu(self.c_fc(x) * self.gate(x))) return x class Block(nn.Module): def __init__(self, config): super().__init__() self.ln_1 = nn.RMSNorm(config.n_embd) self.attn = CausalSelfAttention(config) self.ln_2 = nn.RMSNorm(config.n_embd) self.mlp = MLP(config) def forward(self, x): x = x + self.attn(self.ln_1(x)) x = x + self.mlp(self.ln_2(x)) return x class GPT(PreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.transformer = nn.ModuleDict(dict( wte = nn.Embedding(config.vocab_size, config.n_embd), wpe = nn.Embedding(config.block_size, config.n_embd), # Learned positional embedding h = nn.ModuleList(Block(config) for _ in range(config.n_layer)), ln_f = nn.RMSNorm(config.n_embd), )) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) # Weight sharing scheme self.transformer.wte.weight = self.lm_head.weight # GPT2/transformers is all you need's style # Worse trainging loss though. From my observation # init params # Apply fn recursively to every submodule (as returned by .children()) as well as self. self.apply(self._init_weights) def _init_weights(self, module): # iterate over each module เลยสินะ if isinstance(module, nn.Linear): std = 0.02 if hasattr(module, 'NANOGPT_SCALE_INIT'): # if there is the flag std *= (2 * self.config.n_layer) ** -0.5 torch.nn.init.normal_(module.weight, mean=0.0, std=std) # typicall, std is 1/sqrt(feature) if module.bias is not None: torch.nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) def forward(self, idx, target=None): # idx is of shape (B, T) B, T = idx.size() assert T <= self.config.block_size, f"Cannot forward a sequence of length {T}, blocksize is only {self.config.block_size}" pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T) tok_emb = self.transformer.wte(idx) # with torch.autocast(device_type=device, enabled=False): pos_emb = self.transformer.wpe(pos) x = tok_emb + pos_emb # forward the block of the transformer for block in self.transformer.h: x = block(x) # forward the final layernorm and the classifier x = self.transformer.ln_f(x) loss = None logits = self.lm_head(x) # (B, T, vocab_size) if target is not None: loss = F.cross_entropy(logits.view(-1,logits.size(-1)), target.view(-1)) # view -1 to flatten B,T dim to B*T for target, and logits.view(-1,logits.size(-1)) to get logit into shape B*T, vocab return logits, loss # Typo แดกโลก @classmethod def from_pretrained(cls, model_type): """Loads pretrained GPT-2 model weights from huggingface""" assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'} from transformers import GPT2LMHeadModel print("loading weights from pretrained gpt: %s" % model_type) # n_layer, n_head and n_embd are determined from model_type config_args = { 'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params 'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params 'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params 'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params }[model_type] config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints # create a from-scratch initialized minGPT model config = GPTConfig(**config_args) model = GPT(config) sd = model.state_dict() sd_keys = sd.keys() sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param # init a huggingface/transformers model model_hf = GPT2LMHeadModel.from_pretrained(model_type) sd_hf = model_hf.state_dict() # copy while ensuring all of the parameters are aligned and match in names and shapes sd_keys_hf = sd_hf.keys() sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer) transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight'] # basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear # this means that we have to transpose these weights when we import them assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}" for k in sd_keys_hf: if any(k.endswith(w) for w in transposed): # special treatment for the Conv1D weights we need to transpose assert sd_hf[k].shape[::-1] == sd[k].shape with torch.no_grad(): sd[k].copy_(sd_hf[k].t()) else: # vanilla copy over the other parameters assert sd_hf[k].shape == sd[k].shape with torch.no_grad(): sd[k].copy_(sd_hf[k]) return model def configure_optimizers(self, weight_decay, learning_rate, device): # start wit all of the candidate parameters (that require grad) param_dict = {pn: p for pn, p in self.named_parameters()} param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad} # create optim groups. Any parameters that is 2D will be weight decayed, otherwise no. # i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorm don't. decay_params = [p for n, p in param_dict.items() if p.dim() >= 2] nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2] optim_groups = [ {'params': decay_params, 'weight_decay': weight_decay}, {'params': nodecay_params, 'weight_decay': 0.0} ] num_decay_params = sum(p.numel() for p in decay_params) num_nodecay_params = sum(p.numel() for p in nodecay_params) print(f"num decayed parameter tensor: {len(decay_params)}, with {num_decay_params:,} paramters") print(f"num non-decayed parameter tensor: {len(nodecay_params)}, with {num_nodecay_params:,} paramters") # Create AdamW optimizer and use fused version if it is available fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters use_fused = fused_available and 'cuda' in device print(f"using fused AdamW: {use_fused}") optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=(0.9, 0.95), eps=1e-8, fused=use_fused) return optimizer # =============================================================================================== num_return_sequences = 5 max_length = 30 # ================================================================================================= import tiktoken import numpy as np def load_tokens(filename): npt = np.load(filename) ptt = torch.tensor(npt, dtype=torch.long) return ptt class DataLoaderLite: def __init__(self, B, T, process_rank, num_processes, split): self.B = B self.T = T self.process_rank = process_rank self.num_processes = num_processes assert split in {'train', 'val'} # get the shard filename data_root = "edu_fineweb10B" shards = os.listdir(data_root) shards = [s for s in shards if split in s] shards = sorted(shards) shards = [os.path.join(data_root, s) for s in shards] self.shards = shards assert len(shards) > 0, f"no shards found in the split {split}" if master_process: print(f"found {len(shards)} shards for split {split}") # state # self.current_position = 0 # We wanna stride out dall the processes # self.current_shard = 0 # self.tokens = load_tokens(self.shards[self.current_shard]) # self.current_position = self.B * self.T * self.process_rank self.reset() # reset take care of the trouble def reset(self): # state, init at shard zero self.current_shard = 0 self.tokens = load_tokens(self.shards[self.current_shard]) self.current_position = self.B * self.T * self.process_rank def next_batch(self): B, T = self.B, self.T buf = self.tokens[self.current_position:self.current_position+B*T+1] x = (buf[:-1]).view(B, T) # input y = (buf[1:]).view(B, T) # target # advance the position in the tensor # self.current_position += B*T self.current_position += B * T * self.num_processes if self.current_position + (B * T * self.num_processes + 1) > len(self.tokens): # When we run out of token in a chard, we advance to the next shard self.current_shard = (self.current_shard + 1) % len(self.shards) self.tokens = load_tokens(self.shards[self.current_shard]) self.current_position = B * T * self.process_rank return x, y # ----------------------------------------------------------------------------- # helper function for HellaSwag eval # takes tokens, mask, and logits, returns the index of the completion with the lowest loss def get_most_likely_row(tokens, mask, logits): # evaluate the autoregressive loss at all positions shift_logits = (logits[..., :-1, :]).contiguous() shift_tokens = (tokens[..., 1:]).contiguous() flat_shift_logits = shift_logits.view(-1, shift_logits.size(-1)) flat_shift_tokens = shift_tokens.view(-1) shift_losses = F.cross_entropy(flat_shift_logits, flat_shift_tokens, reduction='none') shift_losses = shift_losses.view(tokens.size(0), -1) # now get the average loss just for the completion region (where mask == 1), in each row shift_mask = (mask[..., 1:]).contiguous() # we must shift mask, so we start at the last prompt token masked_shift_losses = shift_losses * shift_mask # sum and divide by the number of 1s in the mask sum_loss = masked_shift_losses.sum(dim=1) avg_loss = sum_loss / shift_mask.sum(dim=1) # now we have a loss for each of the 4 completions # the one with the lowest loss should be the most likely pred_norm = avg_loss.argmin().item() return pred_norm