ruixie commited on
Commit
8f495f4
·
1 Parent(s): acf3088

Upload folder using huggingface_hub

Browse files
added_tokens.json ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<commit_after>": 70017,
3
+ "<commit_before>": 70015,
4
+ "<commit_msg>": 70016,
5
+ "<empty_output>": 70014,
6
+ "<filename>": 70005,
7
+ "<fim_middle>": 70002,
8
+ "<fim_pad>": 70004,
9
+ "<fim_prefix>": 70001,
10
+ "<fim_suffix>": 70003,
11
+ "<gh_stars>": 70006,
12
+ "<issue_closed>": 70009,
13
+ "<issue_comment>": 70008,
14
+ "<issue_start>": 70007,
15
+ "<jupyter_code>": 70012,
16
+ "<jupyter_output>": 70013,
17
+ "<jupyter_start>": 70010,
18
+ "<jupyter_text>": 70011,
19
+ "<reponame>": 70018,
20
+ "<|endoftext|>": 70000
21
+ }
config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/nvme/share/shellm/hf_configs/7b_gq_rope",
3
+ "activation_function": "gelu_pytorch_tanh",
4
+ "architectures": [
5
+ "KCLGPTForCausalLM"
6
+ ],
7
+ "attention_softmax_in_fp32": true,
8
+ "attn_pdrop": 0.1,
9
+ "auto_map": {
10
+ "AutoConfig": "configuration_kclgpt.KCLGPTConfig",
11
+ "AutoModelForCausalLM": "modeling_kclgpt.KCLGPTForCausalLM"
12
+ },
13
+ "bos_token_id": 70000,
14
+ "embd_pdrop": 0.1,
15
+ "eos_token_id": 70000,
16
+ "group_query_attention": true,
17
+ "inference_runner": 0,
18
+ "initializer_range": 0.02,
19
+ "layer_norm_epsilon": 1e-05,
20
+ "max_batch_size": null,
21
+ "max_sequence_length": null,
22
+ "model_type": "kclgpt",
23
+ "n_embd": 4096,
24
+ "n_head": 32,
25
+ "n_inner": 16384,
26
+ "n_layer": 42,
27
+ "n_positions": 8192,
28
+ "num_query_groups": 8,
29
+ "pad_key_length": true,
30
+ "position_embedding_type": "rope",
31
+ "pre_allocate_kv_cache": false,
32
+ "resid_pdrop": 0.1,
33
+ "rope_scaling": null,
34
+ "scale_attention_softmax_in_fp32": true,
35
+ "scale_attn_weights": true,
36
+ "summary_activation": null,
37
+ "summary_first_dropout": 0.1,
38
+ "summary_proj_to_labels": true,
39
+ "summary_type": "cls_index",
40
+ "summary_use_proj": true,
41
+ "torch_dtype": "bfloat16",
42
+ "transformers_version": "4.29.2",
43
+ "use_cache": true,
44
+ "validate_runner_input": true,
45
+ "vocab_size": 70144
46
+ }
configuration_kclgpt.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The BigCode team and HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ KCLGPT configuration"""
16
+
17
+ from transformers.configuration_utils import PretrainedConfig
18
+ from transformers.utils import logging
19
+
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+
24
+ class KCLGPTConfig(PretrainedConfig):
25
+ """
26
+ This is the configuration class to store the configuration of a [`KCLGPTModel`]. It is used to instantiate a
27
+ KCLGPT model according to the specified arguments, defining the model architecture. Instantiating a
28
+ configuration with the defaults will yield a similar configuration to that of the KCLGPT
29
+ [gpt_bigcode](https://huggingface.co/gpt_bigcode) architecture.
30
+
31
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
32
+ documentation from [`PretrainedConfig`] for more information.
33
+
34
+
35
+ Args:
36
+ vocab_size (`int`, *optional*, defaults to 50257):
37
+ Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
38
+ `inputs_ids` passed when calling [`KCLGPTModel`].
39
+ n_positions (`int`, *optional*, defaults to 1024):
40
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
41
+ just in case (e.g., 512 or 1024 or 2048).
42
+ n_embd (`int`, *optional*, defaults to 768):
43
+ Dimensionality of the embeddings and hidden states.
44
+ n_layer (`int`, *optional*, defaults to 12):
45
+ Number of hidden layers in the Transformer encoder.
46
+ n_head (`int`, *optional*, defaults to 12):
47
+ Number of attention heads for each attention layer in the Transformer encoder.
48
+ n_inner (`int`, *optional*, defaults to None):
49
+ Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
50
+ activation_function (`str`, *optional*, defaults to `"gelu_pytorch_tanh"`):
51
+ Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new",
52
+ "gelu_pytorch_tanh"]`.
53
+ resid_pdrop (`float`, *optional*, defaults to 0.1):
54
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
55
+ embd_pdrop (`float`, *optional*, defaults to 0.1):
56
+ The dropout ratio for the embeddings.
57
+ attn_pdrop (`float`, *optional*, defaults to 0.1):
58
+ The dropout ratio for the attention.
59
+ layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
60
+ The epsilon to use in the layer normalization layers.
61
+ initializer_range (`float`, *optional*, defaults to 0.02):
62
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
63
+ scale_attn_weights (`bool`, *optional*, defaults to `True`):
64
+ Scale attention weights by dividing by sqrt(hidden_size)..
65
+ use_cache (`bool`, *optional*, defaults to `True`):
66
+ Whether or not the model should return the last key/values attentions (not used by all models).
67
+ attention_softmax_in_fp32 (`bool`, *optional*, defaults to `True`):
68
+ Whether to call the fused softmax in float32.
69
+ scale_attention_softmax_in_fp32 (`bool`, *optional*, defaults to `True`):
70
+ Whether to scale the attention softmax in float32.
71
+ attention_type (`bool`, *optional*, defaults to `True`):
72
+ Whether to use Multi-Query Attion (`True`) or Multi-Head Attention (`False`).
73
+ Example:
74
+
75
+ ```python
76
+ >>> from transformers import KCLGPTConfig, KCLGPTModel
77
+
78
+ >>> # Initializing a KCLGPT configuration
79
+ >>> configuration = KCLGPTConfig()
80
+
81
+ >>> # Initializing a model (with random weights) from the configuration
82
+ >>> model = KCLGPTModel(configuration)
83
+
84
+ >>> # Accessing the model configuration
85
+ >>> configuration = model.config
86
+ ```"""
87
+
88
+ model_type = "kclgpt"
89
+ keys_to_ignore_at_inference = ["past_key_values"]
90
+ attribute_map = {
91
+ "hidden_size": "n_embd",
92
+ "max_position_embeddings": "n_positions",
93
+ "num_attention_heads": "n_head",
94
+ "num_hidden_layers": "n_layer",
95
+ }
96
+
97
+ def __init__(
98
+ self,
99
+ vocab_size=50257,
100
+ n_positions=1024,
101
+ n_embd=768,
102
+ n_layer=12,
103
+ n_head=12,
104
+ n_inner=None,
105
+ activation_function="gelu_pytorch_tanh",
106
+ resid_pdrop=0.1,
107
+ embd_pdrop=0.1,
108
+ attn_pdrop=0.1,
109
+ layer_norm_epsilon=1e-5,
110
+ initializer_range=0.02,
111
+ scale_attn_weights=True,
112
+ use_cache=True,
113
+ bos_token_id=50256,
114
+ eos_token_id=50256,
115
+ attention_softmax_in_fp32=True,
116
+ scale_attention_softmax_in_fp32=True,
117
+ group_query_attention=True,
118
+ num_query_groups=1,
119
+ position_embedding_type="learned_absolute",
120
+ rope_scaling=None,
121
+ **kwargs,
122
+ ):
123
+ self.vocab_size = vocab_size
124
+ self.n_positions = n_positions
125
+ self.n_embd = n_embd
126
+ self.n_layer = n_layer
127
+ self.n_head = n_head
128
+ self.n_inner = n_inner
129
+ self.activation_function = activation_function
130
+ self.resid_pdrop = resid_pdrop
131
+ self.embd_pdrop = embd_pdrop
132
+ self.attn_pdrop = attn_pdrop
133
+ self.layer_norm_epsilon = layer_norm_epsilon
134
+ self.initializer_range = initializer_range
135
+ self.scale_attn_weights = scale_attn_weights
136
+ self.use_cache = use_cache
137
+ self.attention_softmax_in_fp32 = attention_softmax_in_fp32
138
+ self.scale_attention_softmax_in_fp32 = scale_attention_softmax_in_fp32
139
+ self.group_query_attention = group_query_attention
140
+ self.num_query_groups = num_query_groups
141
+ self.position_embedding_type = position_embedding_type
142
+ self.rope_scaling = rope_scaling
143
+ assert self.position_embedding_type in [
144
+ "learned_absolute", "rope"
145
+ ], "position_embedding_type must be one of ['learned_absolute', 'rope']"
146
+
147
+ self.bos_token_id = bos_token_id
148
+ self.eos_token_id = eos_token_id
149
+
150
+ super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
configuration_shell.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The BigCode team and HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ Shell configuration"""
16
+
17
+ from transformers.configuration_utils import PretrainedConfig
18
+ from transformers.utils import logging
19
+
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+
24
+ class ShellConfig(PretrainedConfig):
25
+ """
26
+ This is the configuration class to store the configuration of a [`ShellModel`]. It is used to instantiate a
27
+ Shell model according to the specified arguments, defining the model architecture. Instantiating a
28
+ configuration with the defaults will yield a similar configuration to that of the Shell
29
+ [gpt_bigcode](https://huggingface.co/gpt_bigcode) architecture.
30
+
31
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
32
+ documentation from [`PretrainedConfig`] for more information.
33
+
34
+
35
+ Args:
36
+ vocab_size (`int`, *optional*, defaults to 50257):
37
+ Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
38
+ `inputs_ids` passed when calling [`ShellModel`].
39
+ n_positions (`int`, *optional*, defaults to 1024):
40
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
41
+ just in case (e.g., 512 or 1024 or 2048).
42
+ n_embd (`int`, *optional*, defaults to 768):
43
+ Dimensionality of the embeddings and hidden states.
44
+ n_layer (`int`, *optional*, defaults to 12):
45
+ Number of hidden layers in the Transformer encoder.
46
+ n_head (`int`, *optional*, defaults to 12):
47
+ Number of attention heads for each attention layer in the Transformer encoder.
48
+ n_inner (`int`, *optional*, defaults to None):
49
+ Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
50
+ activation_function (`str`, *optional*, defaults to `"gelu_pytorch_tanh"`):
51
+ Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new",
52
+ "gelu_pytorch_tanh"]`.
53
+ resid_pdrop (`float`, *optional*, defaults to 0.1):
54
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
55
+ embd_pdrop (`float`, *optional*, defaults to 0.1):
56
+ The dropout ratio for the embeddings.
57
+ attn_pdrop (`float`, *optional*, defaults to 0.1):
58
+ The dropout ratio for the attention.
59
+ layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
60
+ The epsilon to use in the layer normalization layers.
61
+ initializer_range (`float`, *optional*, defaults to 0.02):
62
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
63
+ scale_attn_weights (`bool`, *optional*, defaults to `True`):
64
+ Scale attention weights by dividing by sqrt(hidden_size)..
65
+ use_cache (`bool`, *optional*, defaults to `True`):
66
+ Whether or not the model should return the last key/values attentions (not used by all models).
67
+ attention_softmax_in_fp32 (`bool`, *optional*, defaults to `True`):
68
+ Whether to call the fused softmax in float32.
69
+ scale_attention_softmax_in_fp32 (`bool`, *optional*, defaults to `True`):
70
+ Whether to scale the attention softmax in float32.
71
+ attention_type (`bool`, *optional*, defaults to `True`):
72
+ Whether to use Multi-Query Attion (`True`) or Multi-Head Attention (`False`).
73
+ Example:
74
+
75
+ ```python
76
+ >>> from transformers import ShellConfig, ShellModel
77
+
78
+ >>> # Initializing a Shell configuration
79
+ >>> configuration = ShellConfig()
80
+
81
+ >>> # Initializing a model (with random weights) from the configuration
82
+ >>> model = ShellModel(configuration)
83
+
84
+ >>> # Accessing the model configuration
85
+ >>> configuration = model.config
86
+ ```"""
87
+
88
+ model_type = "kclgpt"
89
+ keys_to_ignore_at_inference = ["past_key_values"]
90
+ attribute_map = {
91
+ "hidden_size": "n_embd",
92
+ "max_position_embeddings": "n_positions",
93
+ "num_attention_heads": "n_head",
94
+ "num_hidden_layers": "n_layer",
95
+ }
96
+
97
+ def __init__(
98
+ self,
99
+ vocab_size=50257,
100
+ n_positions=1024,
101
+ n_embd=768,
102
+ n_layer=12,
103
+ n_head=12,
104
+ n_inner=None,
105
+ activation_function="gelu_pytorch_tanh",
106
+ resid_pdrop=0.1,
107
+ embd_pdrop=0.1,
108
+ attn_pdrop=0.1,
109
+ layer_norm_epsilon=1e-5,
110
+ initializer_range=0.02,
111
+ scale_attn_weights=True,
112
+ use_cache=True,
113
+ bos_token_id=50256,
114
+ eos_token_id=50256,
115
+ attention_softmax_in_fp32=True,
116
+ scale_attention_softmax_in_fp32=True,
117
+ group_query_attention=True,
118
+ num_query_groups=1,
119
+ position_embedding_type="learned_absolute",
120
+ rope_scaling=None,
121
+ **kwargs,
122
+ ):
123
+ self.vocab_size = vocab_size
124
+ self.n_positions = n_positions
125
+ self.n_embd = n_embd
126
+ self.n_layer = n_layer
127
+ self.n_head = n_head
128
+ self.n_inner = n_inner
129
+ self.activation_function = activation_function
130
+ self.resid_pdrop = resid_pdrop
131
+ self.embd_pdrop = embd_pdrop
132
+ self.attn_pdrop = attn_pdrop
133
+ self.layer_norm_epsilon = layer_norm_epsilon
134
+ self.initializer_range = initializer_range
135
+ self.scale_attn_weights = scale_attn_weights
136
+ self.use_cache = use_cache
137
+ self.attention_softmax_in_fp32 = attention_softmax_in_fp32
138
+ self.scale_attention_softmax_in_fp32 = scale_attention_softmax_in_fp32
139
+ self.group_query_attention = group_query_attention
140
+ self.num_query_groups = num_query_groups
141
+ self.position_embedding_type = position_embedding_type
142
+ self.rope_scaling = rope_scaling
143
+ assert self.position_embedding_type in [
144
+ "learned_absolute", "rope"
145
+ ], "position_embedding_type must be one of ['learned_absolute', 'rope']"
146
+
147
+ self.bos_token_id = bos_token_id
148
+ self.eos_token_id = eos_token_id
149
+
150
+ super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 70000,
4
+ "eos_token_id": 70000,
5
+ "transformers_version": "4.29.2"
6
+ }
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35affc26417d78eaaeaeb0dad037c4d1b7632018413b742892ea4bd72aac18fd
3
+ size 9955659648
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24eb05f7e6c43d3bb2d3cd51d14bf6063fd8b37e6df3d193423ba3c10c1d3da5
3
+ size 5420501688
model.safetensors.index.json ADDED
@@ -0,0 +1,556 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15376102656
4
+ },
5
+ "weight_map": {
6
+ "transformer.h.0.attn.c_attn.bias": "model-00001-of-00002.safetensors",
7
+ "transformer.h.0.attn.c_attn.weight": "model-00001-of-00002.safetensors",
8
+ "transformer.h.0.attn.c_proj.bias": "model-00001-of-00002.safetensors",
9
+ "transformer.h.0.attn.c_proj.weight": "model-00001-of-00002.safetensors",
10
+ "transformer.h.0.attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
11
+ "transformer.h.0.ln_1.bias": "model-00001-of-00002.safetensors",
12
+ "transformer.h.0.ln_1.weight": "model-00001-of-00002.safetensors",
13
+ "transformer.h.0.ln_2.bias": "model-00001-of-00002.safetensors",
14
+ "transformer.h.0.ln_2.weight": "model-00001-of-00002.safetensors",
15
+ "transformer.h.0.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
16
+ "transformer.h.0.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
17
+ "transformer.h.0.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
18
+ "transformer.h.0.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
19
+ "transformer.h.1.attn.c_attn.bias": "model-00001-of-00002.safetensors",
20
+ "transformer.h.1.attn.c_attn.weight": "model-00001-of-00002.safetensors",
21
+ "transformer.h.1.attn.c_proj.bias": "model-00001-of-00002.safetensors",
22
+ "transformer.h.1.attn.c_proj.weight": "model-00001-of-00002.safetensors",
23
+ "transformer.h.1.attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
24
+ "transformer.h.1.ln_1.bias": "model-00001-of-00002.safetensors",
25
+ "transformer.h.1.ln_1.weight": "model-00001-of-00002.safetensors",
26
+ "transformer.h.1.ln_2.bias": "model-00001-of-00002.safetensors",
27
+ "transformer.h.1.ln_2.weight": "model-00001-of-00002.safetensors",
28
+ "transformer.h.1.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
29
+ "transformer.h.1.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
30
+ "transformer.h.1.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
31
+ "transformer.h.1.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
32
+ "transformer.h.10.attn.c_attn.bias": "model-00001-of-00002.safetensors",
33
+ "transformer.h.10.attn.c_attn.weight": "model-00001-of-00002.safetensors",
34
+ "transformer.h.10.attn.c_proj.bias": "model-00001-of-00002.safetensors",
35
+ "transformer.h.10.attn.c_proj.weight": "model-00001-of-00002.safetensors",
36
+ "transformer.h.10.attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
37
+ "transformer.h.10.ln_1.bias": "model-00001-of-00002.safetensors",
38
+ "transformer.h.10.ln_1.weight": "model-00001-of-00002.safetensors",
39
+ "transformer.h.10.ln_2.bias": "model-00001-of-00002.safetensors",
40
+ "transformer.h.10.ln_2.weight": "model-00001-of-00002.safetensors",
41
+ "transformer.h.10.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
42
+ "transformer.h.10.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
43
+ "transformer.h.10.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
44
+ "transformer.h.10.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
45
+ "transformer.h.11.attn.c_attn.bias": "model-00001-of-00002.safetensors",
46
+ "transformer.h.11.attn.c_attn.weight": "model-00001-of-00002.safetensors",
47
+ "transformer.h.11.attn.c_proj.bias": "model-00001-of-00002.safetensors",
48
+ "transformer.h.11.attn.c_proj.weight": "model-00001-of-00002.safetensors",
49
+ "transformer.h.11.attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
50
+ "transformer.h.11.ln_1.bias": "model-00001-of-00002.safetensors",
51
+ "transformer.h.11.ln_1.weight": "model-00001-of-00002.safetensors",
52
+ "transformer.h.11.ln_2.bias": "model-00001-of-00002.safetensors",
53
+ "transformer.h.11.ln_2.weight": "model-00001-of-00002.safetensors",
54
+ "transformer.h.11.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
55
+ "transformer.h.11.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
56
+ "transformer.h.11.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
57
+ "transformer.h.11.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
58
+ "transformer.h.12.attn.c_attn.bias": "model-00001-of-00002.safetensors",
59
+ "transformer.h.12.attn.c_attn.weight": "model-00001-of-00002.safetensors",
60
+ "transformer.h.12.attn.c_proj.bias": "model-00001-of-00002.safetensors",
61
+ "transformer.h.12.attn.c_proj.weight": "model-00001-of-00002.safetensors",
62
+ "transformer.h.12.attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
63
+ "transformer.h.12.ln_1.bias": "model-00001-of-00002.safetensors",
64
+ "transformer.h.12.ln_1.weight": "model-00001-of-00002.safetensors",
65
+ "transformer.h.12.ln_2.bias": "model-00001-of-00002.safetensors",
66
+ "transformer.h.12.ln_2.weight": "model-00001-of-00002.safetensors",
67
+ "transformer.h.12.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
68
+ "transformer.h.12.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
69
+ "transformer.h.12.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
70
+ "transformer.h.12.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
71
+ "transformer.h.13.attn.c_attn.bias": "model-00001-of-00002.safetensors",
72
+ "transformer.h.13.attn.c_attn.weight": "model-00001-of-00002.safetensors",
73
+ "transformer.h.13.attn.c_proj.bias": "model-00001-of-00002.safetensors",
74
+ "transformer.h.13.attn.c_proj.weight": "model-00001-of-00002.safetensors",
75
+ "transformer.h.13.attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
76
+ "transformer.h.13.ln_1.bias": "model-00001-of-00002.safetensors",
77
+ "transformer.h.13.ln_1.weight": "model-00001-of-00002.safetensors",
78
+ "transformer.h.13.ln_2.bias": "model-00001-of-00002.safetensors",
79
+ "transformer.h.13.ln_2.weight": "model-00001-of-00002.safetensors",
80
+ "transformer.h.13.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
81
+ "transformer.h.13.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
82
+ "transformer.h.13.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
83
+ "transformer.h.13.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
84
+ "transformer.h.14.attn.c_attn.bias": "model-00001-of-00002.safetensors",
85
+ "transformer.h.14.attn.c_attn.weight": "model-00001-of-00002.safetensors",
86
+ "transformer.h.14.attn.c_proj.bias": "model-00001-of-00002.safetensors",
87
+ "transformer.h.14.attn.c_proj.weight": "model-00001-of-00002.safetensors",
88
+ "transformer.h.14.attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
89
+ "transformer.h.14.ln_1.bias": "model-00001-of-00002.safetensors",
90
+ "transformer.h.14.ln_1.weight": "model-00001-of-00002.safetensors",
91
+ "transformer.h.14.ln_2.bias": "model-00001-of-00002.safetensors",
92
+ "transformer.h.14.ln_2.weight": "model-00001-of-00002.safetensors",
93
+ "transformer.h.14.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
94
+ "transformer.h.14.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
95
+ "transformer.h.14.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
96
+ "transformer.h.14.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
97
+ "transformer.h.15.attn.c_attn.bias": "model-00001-of-00002.safetensors",
98
+ "transformer.h.15.attn.c_attn.weight": "model-00001-of-00002.safetensors",
99
+ "transformer.h.15.attn.c_proj.bias": "model-00001-of-00002.safetensors",
100
+ "transformer.h.15.attn.c_proj.weight": "model-00001-of-00002.safetensors",
101
+ "transformer.h.15.attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
102
+ "transformer.h.15.ln_1.bias": "model-00001-of-00002.safetensors",
103
+ "transformer.h.15.ln_1.weight": "model-00001-of-00002.safetensors",
104
+ "transformer.h.15.ln_2.bias": "model-00001-of-00002.safetensors",
105
+ "transformer.h.15.ln_2.weight": "model-00001-of-00002.safetensors",
106
+ "transformer.h.15.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
107
+ "transformer.h.15.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
108
+ "transformer.h.15.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
109
+ "transformer.h.15.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
110
+ "transformer.h.16.attn.c_attn.bias": "model-00001-of-00002.safetensors",
111
+ "transformer.h.16.attn.c_attn.weight": "model-00001-of-00002.safetensors",
112
+ "transformer.h.16.attn.c_proj.bias": "model-00001-of-00002.safetensors",
113
+ "transformer.h.16.attn.c_proj.weight": "model-00001-of-00002.safetensors",
114
+ "transformer.h.16.attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
115
+ "transformer.h.16.ln_1.bias": "model-00001-of-00002.safetensors",
116
+ "transformer.h.16.ln_1.weight": "model-00001-of-00002.safetensors",
117
+ "transformer.h.16.ln_2.bias": "model-00001-of-00002.safetensors",
118
+ "transformer.h.16.ln_2.weight": "model-00001-of-00002.safetensors",
119
+ "transformer.h.16.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
120
+ "transformer.h.16.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
121
+ "transformer.h.16.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
122
+ "transformer.h.16.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
123
+ "transformer.h.17.attn.c_attn.bias": "model-00001-of-00002.safetensors",
124
+ "transformer.h.17.attn.c_attn.weight": "model-00001-of-00002.safetensors",
125
+ "transformer.h.17.attn.c_proj.bias": "model-00001-of-00002.safetensors",
126
+ "transformer.h.17.attn.c_proj.weight": "model-00001-of-00002.safetensors",
127
+ "transformer.h.17.attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
128
+ "transformer.h.17.ln_1.bias": "model-00001-of-00002.safetensors",
129
+ "transformer.h.17.ln_1.weight": "model-00001-of-00002.safetensors",
130
+ "transformer.h.17.ln_2.bias": "model-00001-of-00002.safetensors",
131
+ "transformer.h.17.ln_2.weight": "model-00001-of-00002.safetensors",
132
+ "transformer.h.17.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
133
+ "transformer.h.17.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
134
+ "transformer.h.17.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
135
+ "transformer.h.17.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
136
+ "transformer.h.18.attn.c_attn.bias": "model-00001-of-00002.safetensors",
137
+ "transformer.h.18.attn.c_attn.weight": "model-00001-of-00002.safetensors",
138
+ "transformer.h.18.attn.c_proj.bias": "model-00001-of-00002.safetensors",
139
+ "transformer.h.18.attn.c_proj.weight": "model-00001-of-00002.safetensors",
140
+ "transformer.h.18.attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
141
+ "transformer.h.18.ln_1.bias": "model-00001-of-00002.safetensors",
142
+ "transformer.h.18.ln_1.weight": "model-00001-of-00002.safetensors",
143
+ "transformer.h.18.ln_2.bias": "model-00001-of-00002.safetensors",
144
+ "transformer.h.18.ln_2.weight": "model-00001-of-00002.safetensors",
145
+ "transformer.h.18.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
146
+ "transformer.h.18.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
147
+ "transformer.h.18.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
148
+ "transformer.h.18.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
149
+ "transformer.h.19.attn.c_attn.bias": "model-00001-of-00002.safetensors",
150
+ "transformer.h.19.attn.c_attn.weight": "model-00001-of-00002.safetensors",
151
+ "transformer.h.19.attn.c_proj.bias": "model-00001-of-00002.safetensors",
152
+ "transformer.h.19.attn.c_proj.weight": "model-00001-of-00002.safetensors",
153
+ "transformer.h.19.attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
154
+ "transformer.h.19.ln_1.bias": "model-00001-of-00002.safetensors",
155
+ "transformer.h.19.ln_1.weight": "model-00001-of-00002.safetensors",
156
+ "transformer.h.19.ln_2.bias": "model-00001-of-00002.safetensors",
157
+ "transformer.h.19.ln_2.weight": "model-00001-of-00002.safetensors",
158
+ "transformer.h.19.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
159
+ "transformer.h.19.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
160
+ "transformer.h.19.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
161
+ "transformer.h.19.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
162
+ "transformer.h.2.attn.c_attn.bias": "model-00001-of-00002.safetensors",
163
+ "transformer.h.2.attn.c_attn.weight": "model-00001-of-00002.safetensors",
164
+ "transformer.h.2.attn.c_proj.bias": "model-00001-of-00002.safetensors",
165
+ "transformer.h.2.attn.c_proj.weight": "model-00001-of-00002.safetensors",
166
+ "transformer.h.2.attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
167
+ "transformer.h.2.ln_1.bias": "model-00001-of-00002.safetensors",
168
+ "transformer.h.2.ln_1.weight": "model-00001-of-00002.safetensors",
169
+ "transformer.h.2.ln_2.bias": "model-00001-of-00002.safetensors",
170
+ "transformer.h.2.ln_2.weight": "model-00001-of-00002.safetensors",
171
+ "transformer.h.2.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
172
+ "transformer.h.2.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
173
+ "transformer.h.2.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
174
+ "transformer.h.2.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
175
+ "transformer.h.20.attn.c_attn.bias": "model-00001-of-00002.safetensors",
176
+ "transformer.h.20.attn.c_attn.weight": "model-00001-of-00002.safetensors",
177
+ "transformer.h.20.attn.c_proj.bias": "model-00001-of-00002.safetensors",
178
+ "transformer.h.20.attn.c_proj.weight": "model-00001-of-00002.safetensors",
179
+ "transformer.h.20.attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
180
+ "transformer.h.20.ln_1.bias": "model-00001-of-00002.safetensors",
181
+ "transformer.h.20.ln_1.weight": "model-00001-of-00002.safetensors",
182
+ "transformer.h.20.ln_2.bias": "model-00001-of-00002.safetensors",
183
+ "transformer.h.20.ln_2.weight": "model-00001-of-00002.safetensors",
184
+ "transformer.h.20.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
185
+ "transformer.h.20.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
186
+ "transformer.h.20.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
187
+ "transformer.h.20.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
188
+ "transformer.h.21.attn.c_attn.bias": "model-00001-of-00002.safetensors",
189
+ "transformer.h.21.attn.c_attn.weight": "model-00001-of-00002.safetensors",
190
+ "transformer.h.21.attn.c_proj.bias": "model-00001-of-00002.safetensors",
191
+ "transformer.h.21.attn.c_proj.weight": "model-00001-of-00002.safetensors",
192
+ "transformer.h.21.attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
193
+ "transformer.h.21.ln_1.bias": "model-00001-of-00002.safetensors",
194
+ "transformer.h.21.ln_1.weight": "model-00001-of-00002.safetensors",
195
+ "transformer.h.21.ln_2.bias": "model-00001-of-00002.safetensors",
196
+ "transformer.h.21.ln_2.weight": "model-00001-of-00002.safetensors",
197
+ "transformer.h.21.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
198
+ "transformer.h.21.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
199
+ "transformer.h.21.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
200
+ "transformer.h.21.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
201
+ "transformer.h.22.attn.c_attn.bias": "model-00001-of-00002.safetensors",
202
+ "transformer.h.22.attn.c_attn.weight": "model-00001-of-00002.safetensors",
203
+ "transformer.h.22.attn.c_proj.bias": "model-00001-of-00002.safetensors",
204
+ "transformer.h.22.attn.c_proj.weight": "model-00001-of-00002.safetensors",
205
+ "transformer.h.22.attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
206
+ "transformer.h.22.ln_1.bias": "model-00001-of-00002.safetensors",
207
+ "transformer.h.22.ln_1.weight": "model-00001-of-00002.safetensors",
208
+ "transformer.h.22.ln_2.bias": "model-00001-of-00002.safetensors",
209
+ "transformer.h.22.ln_2.weight": "model-00001-of-00002.safetensors",
210
+ "transformer.h.22.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
211
+ "transformer.h.22.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
212
+ "transformer.h.22.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
213
+ "transformer.h.22.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
214
+ "transformer.h.23.attn.c_attn.bias": "model-00001-of-00002.safetensors",
215
+ "transformer.h.23.attn.c_attn.weight": "model-00001-of-00002.safetensors",
216
+ "transformer.h.23.attn.c_proj.bias": "model-00001-of-00002.safetensors",
217
+ "transformer.h.23.attn.c_proj.weight": "model-00001-of-00002.safetensors",
218
+ "transformer.h.23.attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
219
+ "transformer.h.23.ln_1.bias": "model-00001-of-00002.safetensors",
220
+ "transformer.h.23.ln_1.weight": "model-00001-of-00002.safetensors",
221
+ "transformer.h.23.ln_2.bias": "model-00001-of-00002.safetensors",
222
+ "transformer.h.23.ln_2.weight": "model-00001-of-00002.safetensors",
223
+ "transformer.h.23.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
224
+ "transformer.h.23.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
225
+ "transformer.h.23.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
226
+ "transformer.h.23.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
227
+ "transformer.h.24.attn.c_attn.bias": "model-00001-of-00002.safetensors",
228
+ "transformer.h.24.attn.c_attn.weight": "model-00001-of-00002.safetensors",
229
+ "transformer.h.24.attn.c_proj.bias": "model-00001-of-00002.safetensors",
230
+ "transformer.h.24.attn.c_proj.weight": "model-00001-of-00002.safetensors",
231
+ "transformer.h.24.attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
232
+ "transformer.h.24.ln_1.bias": "model-00001-of-00002.safetensors",
233
+ "transformer.h.24.ln_1.weight": "model-00001-of-00002.safetensors",
234
+ "transformer.h.24.ln_2.bias": "model-00001-of-00002.safetensors",
235
+ "transformer.h.24.ln_2.weight": "model-00001-of-00002.safetensors",
236
+ "transformer.h.24.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
237
+ "transformer.h.24.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
238
+ "transformer.h.24.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
239
+ "transformer.h.24.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
240
+ "transformer.h.25.attn.c_attn.bias": "model-00001-of-00002.safetensors",
241
+ "transformer.h.25.attn.c_attn.weight": "model-00001-of-00002.safetensors",
242
+ "transformer.h.25.attn.c_proj.bias": "model-00001-of-00002.safetensors",
243
+ "transformer.h.25.attn.c_proj.weight": "model-00001-of-00002.safetensors",
244
+ "transformer.h.25.attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
245
+ "transformer.h.25.ln_1.bias": "model-00001-of-00002.safetensors",
246
+ "transformer.h.25.ln_1.weight": "model-00001-of-00002.safetensors",
247
+ "transformer.h.25.ln_2.bias": "model-00001-of-00002.safetensors",
248
+ "transformer.h.25.ln_2.weight": "model-00001-of-00002.safetensors",
249
+ "transformer.h.25.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
250
+ "transformer.h.25.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
251
+ "transformer.h.25.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
252
+ "transformer.h.25.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
253
+ "transformer.h.26.attn.c_attn.bias": "model-00001-of-00002.safetensors",
254
+ "transformer.h.26.attn.c_attn.weight": "model-00001-of-00002.safetensors",
255
+ "transformer.h.26.attn.c_proj.bias": "model-00001-of-00002.safetensors",
256
+ "transformer.h.26.attn.c_proj.weight": "model-00001-of-00002.safetensors",
257
+ "transformer.h.26.attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
258
+ "transformer.h.26.ln_1.bias": "model-00001-of-00002.safetensors",
259
+ "transformer.h.26.ln_1.weight": "model-00001-of-00002.safetensors",
260
+ "transformer.h.26.ln_2.bias": "model-00001-of-00002.safetensors",
261
+ "transformer.h.26.ln_2.weight": "model-00001-of-00002.safetensors",
262
+ "transformer.h.26.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
263
+ "transformer.h.26.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
264
+ "transformer.h.26.mlp.c_proj.bias": "model-00002-of-00002.safetensors",
265
+ "transformer.h.26.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
266
+ "transformer.h.27.attn.c_attn.bias": "model-00002-of-00002.safetensors",
267
+ "transformer.h.27.attn.c_attn.weight": "model-00002-of-00002.safetensors",
268
+ "transformer.h.27.attn.c_proj.bias": "model-00002-of-00002.safetensors",
269
+ "transformer.h.27.attn.c_proj.weight": "model-00002-of-00002.safetensors",
270
+ "transformer.h.27.attn.rotary_emb.inv_freq": "model-00002-of-00002.safetensors",
271
+ "transformer.h.27.ln_1.bias": "model-00002-of-00002.safetensors",
272
+ "transformer.h.27.ln_1.weight": "model-00002-of-00002.safetensors",
273
+ "transformer.h.27.ln_2.bias": "model-00002-of-00002.safetensors",
274
+ "transformer.h.27.ln_2.weight": "model-00002-of-00002.safetensors",
275
+ "transformer.h.27.mlp.c_fc.bias": "model-00002-of-00002.safetensors",
276
+ "transformer.h.27.mlp.c_fc.weight": "model-00002-of-00002.safetensors",
277
+ "transformer.h.27.mlp.c_proj.bias": "model-00002-of-00002.safetensors",
278
+ "transformer.h.27.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
279
+ "transformer.h.28.attn.c_attn.bias": "model-00002-of-00002.safetensors",
280
+ "transformer.h.28.attn.c_attn.weight": "model-00002-of-00002.safetensors",
281
+ "transformer.h.28.attn.c_proj.bias": "model-00002-of-00002.safetensors",
282
+ "transformer.h.28.attn.c_proj.weight": "model-00002-of-00002.safetensors",
283
+ "transformer.h.28.attn.rotary_emb.inv_freq": "model-00002-of-00002.safetensors",
284
+ "transformer.h.28.ln_1.bias": "model-00002-of-00002.safetensors",
285
+ "transformer.h.28.ln_1.weight": "model-00002-of-00002.safetensors",
286
+ "transformer.h.28.ln_2.bias": "model-00002-of-00002.safetensors",
287
+ "transformer.h.28.ln_2.weight": "model-00002-of-00002.safetensors",
288
+ "transformer.h.28.mlp.c_fc.bias": "model-00002-of-00002.safetensors",
289
+ "transformer.h.28.mlp.c_fc.weight": "model-00002-of-00002.safetensors",
290
+ "transformer.h.28.mlp.c_proj.bias": "model-00002-of-00002.safetensors",
291
+ "transformer.h.28.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
292
+ "transformer.h.29.attn.c_attn.bias": "model-00002-of-00002.safetensors",
293
+ "transformer.h.29.attn.c_attn.weight": "model-00002-of-00002.safetensors",
294
+ "transformer.h.29.attn.c_proj.bias": "model-00002-of-00002.safetensors",
295
+ "transformer.h.29.attn.c_proj.weight": "model-00002-of-00002.safetensors",
296
+ "transformer.h.29.attn.rotary_emb.inv_freq": "model-00002-of-00002.safetensors",
297
+ "transformer.h.29.ln_1.bias": "model-00002-of-00002.safetensors",
298
+ "transformer.h.29.ln_1.weight": "model-00002-of-00002.safetensors",
299
+ "transformer.h.29.ln_2.bias": "model-00002-of-00002.safetensors",
300
+ "transformer.h.29.ln_2.weight": "model-00002-of-00002.safetensors",
301
+ "transformer.h.29.mlp.c_fc.bias": "model-00002-of-00002.safetensors",
302
+ "transformer.h.29.mlp.c_fc.weight": "model-00002-of-00002.safetensors",
303
+ "transformer.h.29.mlp.c_proj.bias": "model-00002-of-00002.safetensors",
304
+ "transformer.h.29.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
305
+ "transformer.h.3.attn.c_attn.bias": "model-00001-of-00002.safetensors",
306
+ "transformer.h.3.attn.c_attn.weight": "model-00001-of-00002.safetensors",
307
+ "transformer.h.3.attn.c_proj.bias": "model-00001-of-00002.safetensors",
308
+ "transformer.h.3.attn.c_proj.weight": "model-00001-of-00002.safetensors",
309
+ "transformer.h.3.attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
310
+ "transformer.h.3.ln_1.bias": "model-00001-of-00002.safetensors",
311
+ "transformer.h.3.ln_1.weight": "model-00001-of-00002.safetensors",
312
+ "transformer.h.3.ln_2.bias": "model-00001-of-00002.safetensors",
313
+ "transformer.h.3.ln_2.weight": "model-00001-of-00002.safetensors",
314
+ "transformer.h.3.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
315
+ "transformer.h.3.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
316
+ "transformer.h.3.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
317
+ "transformer.h.3.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
318
+ "transformer.h.30.attn.c_attn.bias": "model-00002-of-00002.safetensors",
319
+ "transformer.h.30.attn.c_attn.weight": "model-00002-of-00002.safetensors",
320
+ "transformer.h.30.attn.c_proj.bias": "model-00002-of-00002.safetensors",
321
+ "transformer.h.30.attn.c_proj.weight": "model-00002-of-00002.safetensors",
322
+ "transformer.h.30.attn.rotary_emb.inv_freq": "model-00002-of-00002.safetensors",
323
+ "transformer.h.30.ln_1.bias": "model-00002-of-00002.safetensors",
324
+ "transformer.h.30.ln_1.weight": "model-00002-of-00002.safetensors",
325
+ "transformer.h.30.ln_2.bias": "model-00002-of-00002.safetensors",
326
+ "transformer.h.30.ln_2.weight": "model-00002-of-00002.safetensors",
327
+ "transformer.h.30.mlp.c_fc.bias": "model-00002-of-00002.safetensors",
328
+ "transformer.h.30.mlp.c_fc.weight": "model-00002-of-00002.safetensors",
329
+ "transformer.h.30.mlp.c_proj.bias": "model-00002-of-00002.safetensors",
330
+ "transformer.h.30.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
331
+ "transformer.h.31.attn.c_attn.bias": "model-00002-of-00002.safetensors",
332
+ "transformer.h.31.attn.c_attn.weight": "model-00002-of-00002.safetensors",
333
+ "transformer.h.31.attn.c_proj.bias": "model-00002-of-00002.safetensors",
334
+ "transformer.h.31.attn.c_proj.weight": "model-00002-of-00002.safetensors",
335
+ "transformer.h.31.attn.rotary_emb.inv_freq": "model-00002-of-00002.safetensors",
336
+ "transformer.h.31.ln_1.bias": "model-00002-of-00002.safetensors",
337
+ "transformer.h.31.ln_1.weight": "model-00002-of-00002.safetensors",
338
+ "transformer.h.31.ln_2.bias": "model-00002-of-00002.safetensors",
339
+ "transformer.h.31.ln_2.weight": "model-00002-of-00002.safetensors",
340
+ "transformer.h.31.mlp.c_fc.bias": "model-00002-of-00002.safetensors",
341
+ "transformer.h.31.mlp.c_fc.weight": "model-00002-of-00002.safetensors",
342
+ "transformer.h.31.mlp.c_proj.bias": "model-00002-of-00002.safetensors",
343
+ "transformer.h.31.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
344
+ "transformer.h.32.attn.c_attn.bias": "model-00002-of-00002.safetensors",
345
+ "transformer.h.32.attn.c_attn.weight": "model-00002-of-00002.safetensors",
346
+ "transformer.h.32.attn.c_proj.bias": "model-00002-of-00002.safetensors",
347
+ "transformer.h.32.attn.c_proj.weight": "model-00002-of-00002.safetensors",
348
+ "transformer.h.32.attn.rotary_emb.inv_freq": "model-00002-of-00002.safetensors",
349
+ "transformer.h.32.ln_1.bias": "model-00002-of-00002.safetensors",
350
+ "transformer.h.32.ln_1.weight": "model-00002-of-00002.safetensors",
351
+ "transformer.h.32.ln_2.bias": "model-00002-of-00002.safetensors",
352
+ "transformer.h.32.ln_2.weight": "model-00002-of-00002.safetensors",
353
+ "transformer.h.32.mlp.c_fc.bias": "model-00002-of-00002.safetensors",
354
+ "transformer.h.32.mlp.c_fc.weight": "model-00002-of-00002.safetensors",
355
+ "transformer.h.32.mlp.c_proj.bias": "model-00002-of-00002.safetensors",
356
+ "transformer.h.32.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
357
+ "transformer.h.33.attn.c_attn.bias": "model-00002-of-00002.safetensors",
358
+ "transformer.h.33.attn.c_attn.weight": "model-00002-of-00002.safetensors",
359
+ "transformer.h.33.attn.c_proj.bias": "model-00002-of-00002.safetensors",
360
+ "transformer.h.33.attn.c_proj.weight": "model-00002-of-00002.safetensors",
361
+ "transformer.h.33.attn.rotary_emb.inv_freq": "model-00002-of-00002.safetensors",
362
+ "transformer.h.33.ln_1.bias": "model-00002-of-00002.safetensors",
363
+ "transformer.h.33.ln_1.weight": "model-00002-of-00002.safetensors",
364
+ "transformer.h.33.ln_2.bias": "model-00002-of-00002.safetensors",
365
+ "transformer.h.33.ln_2.weight": "model-00002-of-00002.safetensors",
366
+ "transformer.h.33.mlp.c_fc.bias": "model-00002-of-00002.safetensors",
367
+ "transformer.h.33.mlp.c_fc.weight": "model-00002-of-00002.safetensors",
368
+ "transformer.h.33.mlp.c_proj.bias": "model-00002-of-00002.safetensors",
369
+ "transformer.h.33.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
370
+ "transformer.h.34.attn.c_attn.bias": "model-00002-of-00002.safetensors",
371
+ "transformer.h.34.attn.c_attn.weight": "model-00002-of-00002.safetensors",
372
+ "transformer.h.34.attn.c_proj.bias": "model-00002-of-00002.safetensors",
373
+ "transformer.h.34.attn.c_proj.weight": "model-00002-of-00002.safetensors",
374
+ "transformer.h.34.attn.rotary_emb.inv_freq": "model-00002-of-00002.safetensors",
375
+ "transformer.h.34.ln_1.bias": "model-00002-of-00002.safetensors",
376
+ "transformer.h.34.ln_1.weight": "model-00002-of-00002.safetensors",
377
+ "transformer.h.34.ln_2.bias": "model-00002-of-00002.safetensors",
378
+ "transformer.h.34.ln_2.weight": "model-00002-of-00002.safetensors",
379
+ "transformer.h.34.mlp.c_fc.bias": "model-00002-of-00002.safetensors",
380
+ "transformer.h.34.mlp.c_fc.weight": "model-00002-of-00002.safetensors",
381
+ "transformer.h.34.mlp.c_proj.bias": "model-00002-of-00002.safetensors",
382
+ "transformer.h.34.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
383
+ "transformer.h.35.attn.c_attn.bias": "model-00002-of-00002.safetensors",
384
+ "transformer.h.35.attn.c_attn.weight": "model-00002-of-00002.safetensors",
385
+ "transformer.h.35.attn.c_proj.bias": "model-00002-of-00002.safetensors",
386
+ "transformer.h.35.attn.c_proj.weight": "model-00002-of-00002.safetensors",
387
+ "transformer.h.35.attn.rotary_emb.inv_freq": "model-00002-of-00002.safetensors",
388
+ "transformer.h.35.ln_1.bias": "model-00002-of-00002.safetensors",
389
+ "transformer.h.35.ln_1.weight": "model-00002-of-00002.safetensors",
390
+ "transformer.h.35.ln_2.bias": "model-00002-of-00002.safetensors",
391
+ "transformer.h.35.ln_2.weight": "model-00002-of-00002.safetensors",
392
+ "transformer.h.35.mlp.c_fc.bias": "model-00002-of-00002.safetensors",
393
+ "transformer.h.35.mlp.c_fc.weight": "model-00002-of-00002.safetensors",
394
+ "transformer.h.35.mlp.c_proj.bias": "model-00002-of-00002.safetensors",
395
+ "transformer.h.35.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
396
+ "transformer.h.36.attn.c_attn.bias": "model-00002-of-00002.safetensors",
397
+ "transformer.h.36.attn.c_attn.weight": "model-00002-of-00002.safetensors",
398
+ "transformer.h.36.attn.c_proj.bias": "model-00002-of-00002.safetensors",
399
+ "transformer.h.36.attn.c_proj.weight": "model-00002-of-00002.safetensors",
400
+ "transformer.h.36.attn.rotary_emb.inv_freq": "model-00002-of-00002.safetensors",
401
+ "transformer.h.36.ln_1.bias": "model-00002-of-00002.safetensors",
402
+ "transformer.h.36.ln_1.weight": "model-00002-of-00002.safetensors",
403
+ "transformer.h.36.ln_2.bias": "model-00002-of-00002.safetensors",
404
+ "transformer.h.36.ln_2.weight": "model-00002-of-00002.safetensors",
405
+ "transformer.h.36.mlp.c_fc.bias": "model-00002-of-00002.safetensors",
406
+ "transformer.h.36.mlp.c_fc.weight": "model-00002-of-00002.safetensors",
407
+ "transformer.h.36.mlp.c_proj.bias": "model-00002-of-00002.safetensors",
408
+ "transformer.h.36.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
409
+ "transformer.h.37.attn.c_attn.bias": "model-00002-of-00002.safetensors",
410
+ "transformer.h.37.attn.c_attn.weight": "model-00002-of-00002.safetensors",
411
+ "transformer.h.37.attn.c_proj.bias": "model-00002-of-00002.safetensors",
412
+ "transformer.h.37.attn.c_proj.weight": "model-00002-of-00002.safetensors",
413
+ "transformer.h.37.attn.rotary_emb.inv_freq": "model-00002-of-00002.safetensors",
414
+ "transformer.h.37.ln_1.bias": "model-00002-of-00002.safetensors",
415
+ "transformer.h.37.ln_1.weight": "model-00002-of-00002.safetensors",
416
+ "transformer.h.37.ln_2.bias": "model-00002-of-00002.safetensors",
417
+ "transformer.h.37.ln_2.weight": "model-00002-of-00002.safetensors",
418
+ "transformer.h.37.mlp.c_fc.bias": "model-00002-of-00002.safetensors",
419
+ "transformer.h.37.mlp.c_fc.weight": "model-00002-of-00002.safetensors",
420
+ "transformer.h.37.mlp.c_proj.bias": "model-00002-of-00002.safetensors",
421
+ "transformer.h.37.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
422
+ "transformer.h.38.attn.c_attn.bias": "model-00002-of-00002.safetensors",
423
+ "transformer.h.38.attn.c_attn.weight": "model-00002-of-00002.safetensors",
424
+ "transformer.h.38.attn.c_proj.bias": "model-00002-of-00002.safetensors",
425
+ "transformer.h.38.attn.c_proj.weight": "model-00002-of-00002.safetensors",
426
+ "transformer.h.38.attn.rotary_emb.inv_freq": "model-00002-of-00002.safetensors",
427
+ "transformer.h.38.ln_1.bias": "model-00002-of-00002.safetensors",
428
+ "transformer.h.38.ln_1.weight": "model-00002-of-00002.safetensors",
429
+ "transformer.h.38.ln_2.bias": "model-00002-of-00002.safetensors",
430
+ "transformer.h.38.ln_2.weight": "model-00002-of-00002.safetensors",
431
+ "transformer.h.38.mlp.c_fc.bias": "model-00002-of-00002.safetensors",
432
+ "transformer.h.38.mlp.c_fc.weight": "model-00002-of-00002.safetensors",
433
+ "transformer.h.38.mlp.c_proj.bias": "model-00002-of-00002.safetensors",
434
+ "transformer.h.38.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
435
+ "transformer.h.39.attn.c_attn.bias": "model-00002-of-00002.safetensors",
436
+ "transformer.h.39.attn.c_attn.weight": "model-00002-of-00002.safetensors",
437
+ "transformer.h.39.attn.c_proj.bias": "model-00002-of-00002.safetensors",
438
+ "transformer.h.39.attn.c_proj.weight": "model-00002-of-00002.safetensors",
439
+ "transformer.h.39.attn.rotary_emb.inv_freq": "model-00002-of-00002.safetensors",
440
+ "transformer.h.39.ln_1.bias": "model-00002-of-00002.safetensors",
441
+ "transformer.h.39.ln_1.weight": "model-00002-of-00002.safetensors",
442
+ "transformer.h.39.ln_2.bias": "model-00002-of-00002.safetensors",
443
+ "transformer.h.39.ln_2.weight": "model-00002-of-00002.safetensors",
444
+ "transformer.h.39.mlp.c_fc.bias": "model-00002-of-00002.safetensors",
445
+ "transformer.h.39.mlp.c_fc.weight": "model-00002-of-00002.safetensors",
446
+ "transformer.h.39.mlp.c_proj.bias": "model-00002-of-00002.safetensors",
447
+ "transformer.h.39.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
448
+ "transformer.h.4.attn.c_attn.bias": "model-00001-of-00002.safetensors",
449
+ "transformer.h.4.attn.c_attn.weight": "model-00001-of-00002.safetensors",
450
+ "transformer.h.4.attn.c_proj.bias": "model-00001-of-00002.safetensors",
451
+ "transformer.h.4.attn.c_proj.weight": "model-00001-of-00002.safetensors",
452
+ "transformer.h.4.attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
453
+ "transformer.h.4.ln_1.bias": "model-00001-of-00002.safetensors",
454
+ "transformer.h.4.ln_1.weight": "model-00001-of-00002.safetensors",
455
+ "transformer.h.4.ln_2.bias": "model-00001-of-00002.safetensors",
456
+ "transformer.h.4.ln_2.weight": "model-00001-of-00002.safetensors",
457
+ "transformer.h.4.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
458
+ "transformer.h.4.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
459
+ "transformer.h.4.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
460
+ "transformer.h.4.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
461
+ "transformer.h.40.attn.c_attn.bias": "model-00002-of-00002.safetensors",
462
+ "transformer.h.40.attn.c_attn.weight": "model-00002-of-00002.safetensors",
463
+ "transformer.h.40.attn.c_proj.bias": "model-00002-of-00002.safetensors",
464
+ "transformer.h.40.attn.c_proj.weight": "model-00002-of-00002.safetensors",
465
+ "transformer.h.40.attn.rotary_emb.inv_freq": "model-00002-of-00002.safetensors",
466
+ "transformer.h.40.ln_1.bias": "model-00002-of-00002.safetensors",
467
+ "transformer.h.40.ln_1.weight": "model-00002-of-00002.safetensors",
468
+ "transformer.h.40.ln_2.bias": "model-00002-of-00002.safetensors",
469
+ "transformer.h.40.ln_2.weight": "model-00002-of-00002.safetensors",
470
+ "transformer.h.40.mlp.c_fc.bias": "model-00002-of-00002.safetensors",
471
+ "transformer.h.40.mlp.c_fc.weight": "model-00002-of-00002.safetensors",
472
+ "transformer.h.40.mlp.c_proj.bias": "model-00002-of-00002.safetensors",
473
+ "transformer.h.40.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
474
+ "transformer.h.41.attn.c_attn.bias": "model-00002-of-00002.safetensors",
475
+ "transformer.h.41.attn.c_attn.weight": "model-00002-of-00002.safetensors",
476
+ "transformer.h.41.attn.c_proj.bias": "model-00002-of-00002.safetensors",
477
+ "transformer.h.41.attn.c_proj.weight": "model-00002-of-00002.safetensors",
478
+ "transformer.h.41.attn.rotary_emb.inv_freq": "model-00002-of-00002.safetensors",
479
+ "transformer.h.41.ln_1.bias": "model-00002-of-00002.safetensors",
480
+ "transformer.h.41.ln_1.weight": "model-00002-of-00002.safetensors",
481
+ "transformer.h.41.ln_2.bias": "model-00002-of-00002.safetensors",
482
+ "transformer.h.41.ln_2.weight": "model-00002-of-00002.safetensors",
483
+ "transformer.h.41.mlp.c_fc.bias": "model-00002-of-00002.safetensors",
484
+ "transformer.h.41.mlp.c_fc.weight": "model-00002-of-00002.safetensors",
485
+ "transformer.h.41.mlp.c_proj.bias": "model-00002-of-00002.safetensors",
486
+ "transformer.h.41.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
487
+ "transformer.h.5.attn.c_attn.bias": "model-00001-of-00002.safetensors",
488
+ "transformer.h.5.attn.c_attn.weight": "model-00001-of-00002.safetensors",
489
+ "transformer.h.5.attn.c_proj.bias": "model-00001-of-00002.safetensors",
490
+ "transformer.h.5.attn.c_proj.weight": "model-00001-of-00002.safetensors",
491
+ "transformer.h.5.attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
492
+ "transformer.h.5.ln_1.bias": "model-00001-of-00002.safetensors",
493
+ "transformer.h.5.ln_1.weight": "model-00001-of-00002.safetensors",
494
+ "transformer.h.5.ln_2.bias": "model-00001-of-00002.safetensors",
495
+ "transformer.h.5.ln_2.weight": "model-00001-of-00002.safetensors",
496
+ "transformer.h.5.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
497
+ "transformer.h.5.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
498
+ "transformer.h.5.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
499
+ "transformer.h.5.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
500
+ "transformer.h.6.attn.c_attn.bias": "model-00001-of-00002.safetensors",
501
+ "transformer.h.6.attn.c_attn.weight": "model-00001-of-00002.safetensors",
502
+ "transformer.h.6.attn.c_proj.bias": "model-00001-of-00002.safetensors",
503
+ "transformer.h.6.attn.c_proj.weight": "model-00001-of-00002.safetensors",
504
+ "transformer.h.6.attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
505
+ "transformer.h.6.ln_1.bias": "model-00001-of-00002.safetensors",
506
+ "transformer.h.6.ln_1.weight": "model-00001-of-00002.safetensors",
507
+ "transformer.h.6.ln_2.bias": "model-00001-of-00002.safetensors",
508
+ "transformer.h.6.ln_2.weight": "model-00001-of-00002.safetensors",
509
+ "transformer.h.6.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
510
+ "transformer.h.6.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
511
+ "transformer.h.6.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
512
+ "transformer.h.6.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
513
+ "transformer.h.7.attn.c_attn.bias": "model-00001-of-00002.safetensors",
514
+ "transformer.h.7.attn.c_attn.weight": "model-00001-of-00002.safetensors",
515
+ "transformer.h.7.attn.c_proj.bias": "model-00001-of-00002.safetensors",
516
+ "transformer.h.7.attn.c_proj.weight": "model-00001-of-00002.safetensors",
517
+ "transformer.h.7.attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
518
+ "transformer.h.7.ln_1.bias": "model-00001-of-00002.safetensors",
519
+ "transformer.h.7.ln_1.weight": "model-00001-of-00002.safetensors",
520
+ "transformer.h.7.ln_2.bias": "model-00001-of-00002.safetensors",
521
+ "transformer.h.7.ln_2.weight": "model-00001-of-00002.safetensors",
522
+ "transformer.h.7.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
523
+ "transformer.h.7.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
524
+ "transformer.h.7.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
525
+ "transformer.h.7.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
526
+ "transformer.h.8.attn.c_attn.bias": "model-00001-of-00002.safetensors",
527
+ "transformer.h.8.attn.c_attn.weight": "model-00001-of-00002.safetensors",
528
+ "transformer.h.8.attn.c_proj.bias": "model-00001-of-00002.safetensors",
529
+ "transformer.h.8.attn.c_proj.weight": "model-00001-of-00002.safetensors",
530
+ "transformer.h.8.attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
531
+ "transformer.h.8.ln_1.bias": "model-00001-of-00002.safetensors",
532
+ "transformer.h.8.ln_1.weight": "model-00001-of-00002.safetensors",
533
+ "transformer.h.8.ln_2.bias": "model-00001-of-00002.safetensors",
534
+ "transformer.h.8.ln_2.weight": "model-00001-of-00002.safetensors",
535
+ "transformer.h.8.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
536
+ "transformer.h.8.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
537
+ "transformer.h.8.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
538
+ "transformer.h.8.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
539
+ "transformer.h.9.attn.c_attn.bias": "model-00001-of-00002.safetensors",
540
+ "transformer.h.9.attn.c_attn.weight": "model-00001-of-00002.safetensors",
541
+ "transformer.h.9.attn.c_proj.bias": "model-00001-of-00002.safetensors",
542
+ "transformer.h.9.attn.c_proj.weight": "model-00001-of-00002.safetensors",
543
+ "transformer.h.9.attn.rotary_emb.inv_freq": "model-00001-of-00002.safetensors",
544
+ "transformer.h.9.ln_1.bias": "model-00001-of-00002.safetensors",
545
+ "transformer.h.9.ln_1.weight": "model-00001-of-00002.safetensors",
546
+ "transformer.h.9.ln_2.bias": "model-00001-of-00002.safetensors",
547
+ "transformer.h.9.ln_2.weight": "model-00001-of-00002.safetensors",
548
+ "transformer.h.9.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
549
+ "transformer.h.9.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
550
+ "transformer.h.9.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
551
+ "transformer.h.9.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
552
+ "transformer.ln_f.bias": "model-00002-of-00002.safetensors",
553
+ "transformer.ln_f.weight": "model-00002-of-00002.safetensors",
554
+ "transformer.wte.weight": "model-00001-of-00002.safetensors"
555
+ }
556
+ }
modeling_kclgpt.py ADDED
@@ -0,0 +1,939 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The Bigcode team and HuggingFace Inc. team.
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """PyTorch KCLGPT model."""
15
+ import math
16
+ from typing import List, Optional, Tuple, Union
17
+
18
+ import torch
19
+ import torch.utils.checkpoint
20
+ from torch import nn
21
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
22
+
23
+ from transformers.activations import ACT2FN
24
+ from transformers.modeling_outputs import (
25
+ BaseModelOutputWithPastAndCrossAttentions,
26
+ CausalLMOutputWithCrossAttentions,
27
+ )
28
+ from transformers.modeling_utils import PreTrainedModel
29
+ from transformers.utils import (
30
+ add_start_docstrings,
31
+ add_start_docstrings_to_model_forward,
32
+ logging,
33
+ )
34
+ from .configuration_kclgpt import KCLGPTConfig
35
+
36
+
37
+ logger = logging.get_logger(__name__)
38
+
39
+ # Fused kernels
40
+ # Use separate functions for each case because conditionals prevent kernel fusion.
41
+ # TODO: Could have better fused kernels depending on scaling, dropout and head mask.
42
+ # Is it doable without writing 32 functions?
43
+ @torch.jit.script
44
+ def upcast_masked_softmax(
45
+ x: torch.Tensor, mask: torch.Tensor, mask_value: torch.Tensor, scale: float, softmax_dtype: torch.dtype
46
+ ):
47
+ input_dtype = x.dtype
48
+ x = x.to(softmax_dtype) * scale
49
+ x = torch.where(mask, x, mask_value)
50
+ x = torch.nn.functional.softmax(x, dim=-1).to(input_dtype)
51
+ return x
52
+
53
+
54
+ @torch.jit.script
55
+ def upcast_softmax(x: torch.Tensor, scale: float, softmax_dtype: torch.dtype):
56
+ input_dtype = x.dtype
57
+ x = x.to(softmax_dtype) * scale
58
+ x = torch.nn.functional.softmax(x, dim=-1).to(input_dtype)
59
+ return x
60
+
61
+
62
+ @torch.jit.script
63
+ def masked_softmax(x: torch.Tensor, mask: torch.Tensor, mask_value: torch.Tensor):
64
+ x = torch.where(mask, x, mask_value)
65
+ x = torch.nn.functional.softmax(x, dim=-1)
66
+ return x
67
+
68
+
69
+ class LlamaRotaryEmbedding(torch.nn.Module):
70
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
71
+ super().__init__()
72
+
73
+ self.dim = dim
74
+ self.max_position_embeddings = max_position_embeddings
75
+ self.base = base
76
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
77
+ self.register_buffer("inv_freq", inv_freq)
78
+
79
+ # Build here to make `torch.jit.trace` work.
80
+ self._set_cos_sin_cache(
81
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
82
+ )
83
+
84
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
85
+ self.max_seq_len_cached = seq_len
86
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
87
+
88
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
89
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
90
+ emb = torch.cat((freqs, freqs), dim=-1)
91
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
92
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
93
+
94
+ def forward(self, x, seq_len=None):
95
+ # x: [bs, num_attention_heads, seq_len, head_size]
96
+ if seq_len > self.max_seq_len_cached:
97
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
98
+
99
+ return (
100
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
101
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
102
+ )
103
+
104
+
105
+ class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
106
+ """LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
107
+
108
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
109
+ self.scaling_factor = scaling_factor
110
+ super().__init__(dim, max_position_embeddings, base, device)
111
+
112
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
113
+ self.max_seq_len_cached = seq_len
114
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
115
+ t = t / self.scaling_factor
116
+
117
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
118
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
119
+ emb = torch.cat((freqs, freqs), dim=-1)
120
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
121
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
122
+
123
+
124
+ class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
125
+ """LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
126
+
127
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
128
+ self.scaling_factor = scaling_factor
129
+ super().__init__(dim, max_position_embeddings, base, device)
130
+
131
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
132
+ self.max_seq_len_cached = seq_len
133
+
134
+ if seq_len > self.max_position_embeddings:
135
+ base = self.base * (
136
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
137
+ ) ** (self.dim / (self.dim - 2))
138
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
139
+ self.register_buffer("inv_freq", inv_freq)
140
+
141
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
142
+
143
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
144
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
145
+ emb = torch.cat((freqs, freqs), dim=-1)
146
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
147
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
148
+
149
+ def rotate_half(x):
150
+ """Rotates half the hidden dims of the input."""
151
+ x1 = x[..., : x.shape[-1] // 2]
152
+ x2 = x[..., x.shape[-1] // 2 :]
153
+ return torch.cat((-x2, x1), dim=-1)
154
+
155
+
156
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
157
+ # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
158
+ cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
159
+ sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
160
+ cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
161
+ sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
162
+ q_embed = (q * cos) + (rotate_half(q) * sin)
163
+ k_embed = (k * cos) + (rotate_half(k) * sin)
164
+ return q_embed, k_embed
165
+
166
+
167
+ class KCLGPTAttention(nn.Module):
168
+ def __init__(self, config, layer_idx=None):
169
+ super().__init__()
170
+ self.mask_value = None
171
+
172
+ self.position_embedding_type = config.position_embedding_type
173
+ self.rope_scaling = config.rope_scaling
174
+ self.max_position_embeddings = config.max_position_embeddings
175
+
176
+ self.group_query_attention = config.group_query_attention
177
+ self.num_query_groups = config.num_query_groups
178
+
179
+ self.embed_dim = config.hidden_size
180
+ self.num_heads = config.num_attention_heads
181
+ self.head_dim = self.embed_dim // self.num_heads
182
+ self.kv_heads = config.num_query_groups if self.group_query_attention else self.num_heads
183
+ self.kv_dim = self.kv_heads * self.head_dim
184
+ self.split_size = self.embed_dim
185
+ if self.head_dim * self.num_heads != self.embed_dim:
186
+ raise ValueError(
187
+ f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
188
+ f" {self.num_heads})."
189
+ )
190
+
191
+ self.scale_attn_weights = config.scale_attn_weights
192
+
193
+ self.layer_idx = layer_idx
194
+ self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
195
+ self.scale_attention_softmax_in_fp32 = (
196
+ config.scale_attention_softmax_in_fp32 and config.attention_softmax_in_fp32
197
+ )
198
+
199
+ self.c_attn = nn.Linear(self.embed_dim, self.embed_dim + 2 * self.kv_dim)
200
+
201
+ self.c_proj = nn.Linear(self.embed_dim, self.embed_dim)
202
+
203
+ self.attn_dropout = nn.Dropout(config.attn_pdrop)
204
+ self.resid_dropout = nn.Dropout(config.resid_pdrop)
205
+
206
+ if self.position_embedding_type == "rope":
207
+ self._init_rope()
208
+
209
+ def _init_rope(self):
210
+ if self.rope_scaling is None:
211
+ self.rotary_emb = LlamaRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
212
+ else:
213
+ scaling_type = self.rope_scaling["type"]
214
+ scaling_factor = self.rope_scaling["factor"]
215
+ if scaling_type == "linear":
216
+ self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
217
+ self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
218
+ )
219
+ elif scaling_type == "dynamic":
220
+ self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
221
+ self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
222
+ )
223
+ else:
224
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
225
+
226
+
227
+ def _get_mask_value(self, device, dtype):
228
+ # torch.where expects a tensor. We use a cache to avoid recreating it every time.
229
+ if self.mask_value is None or self.mask_value.dtype != dtype or self.mask_value.device != device:
230
+ self.mask_value = torch.full([], torch.finfo(dtype).min, dtype=dtype, device=device)
231
+ return self.mask_value
232
+
233
+ def _attn(self, query, key, value, attention_mask=None, head_mask=None):
234
+ dtype = query.dtype
235
+ softmax_dtype = torch.float32 if self.attention_softmax_in_fp32 else dtype
236
+ upcast = dtype != softmax_dtype
237
+
238
+ unscale = self.layer_idx + 1 if self.scale_attention_softmax_in_fp32 and upcast else 1
239
+ scale_factor = unscale**-1
240
+ if self.scale_attn_weights:
241
+ scale_factor /= self.head_dim**0.5
242
+
243
+ # [b, np, sq, sk]
244
+ output_size = (query.size(1),
245
+ query.size(2),
246
+ query.size(0),
247
+ key.size(0))
248
+ attn_view = (output_size[0]*output_size[1], output_size[2], output_size[3])
249
+
250
+ # [sq, b, np, hn] -> [sq, b * np, hn]
251
+ query = query.reshape(output_size[2],
252
+ output_size[0] * output_size[1], -1)
253
+ # [sk, b, np, hn] -> [sk, b * np, hn]
254
+ key = key.reshape(output_size[3],
255
+ output_size[0] * output_size[1], -1)
256
+ attn_weights = torch.empty(attn_view, device=query.device, dtype=query.dtype)
257
+ if query.device.type == "cpu":
258
+ # This is needed because of a bug in pytorch https://github.com/pytorch/pytorch/issues/80588.
259
+ # The bug was fixed in https://github.com/pytorch/pytorch/pull/96086,
260
+ # but the fix has not been released as of pytorch version 2.0.0.
261
+ attn_weights = torch.zeros_like(attn_weights)
262
+ beta = 1
263
+ else:
264
+ beta = 0
265
+
266
+ attn_weights = torch.baddbmm(attn_weights,
267
+ query.transpose(0, 1),
268
+ key.transpose(0, 1).transpose(1, 2),
269
+ beta=beta, alpha=scale_factor).reshape(output_size)
270
+
271
+ if upcast:
272
+ # Use a fused kernel to prevent a large overhead from casting and scaling.
273
+ # Sub-optimal when the key length is not a multiple of 8.
274
+ if attention_mask is None:
275
+ attn_weights = upcast_softmax(attn_weights, unscale, softmax_dtype)
276
+ else:
277
+ mask_value = self._get_mask_value(attn_weights.device, softmax_dtype)
278
+ attn_weights = upcast_masked_softmax(attn_weights, attention_mask, mask_value, unscale, softmax_dtype)
279
+ else:
280
+ if attention_mask is not None:
281
+ mask_value = self._get_mask_value(attn_weights.device, softmax_dtype)
282
+
283
+ # The fused kernel is very slow when the key length is not a multiple of 8, so we skip fusion.
284
+ attn_weights = torch.where(attention_mask, attn_weights, mask_value)
285
+
286
+ attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
287
+
288
+ attn_weights = self.attn_dropout(attn_weights)
289
+
290
+ attn_weights = attn_weights.reshape(attn_view)
291
+
292
+ # value_layer -> context layer.
293
+ # [sk, b, np, hn] --> [b, np, sq, hn]
294
+
295
+ # context layer shape: [b, np, sq, hn]
296
+ output_size = (value.size(1),
297
+ value.size(2),
298
+ query.size(0),
299
+ value.size(3))
300
+
301
+ # change view [sk, b * np, hn]
302
+ value = value.reshape(value.size(0),
303
+ output_size[0] * output_size[1], -1)
304
+ attn_output = torch.bmm(attn_weights, value.transpose(0, 1))
305
+
306
+ # change view [b, np, sq, hn]
307
+ attn_output = attn_output.reshape(*output_size)
308
+ # [b, np, sq, hn] --> [sq, b, np, hn]
309
+ attn_output = attn_output.permute(2, 0, 1, 3).contiguous()
310
+
311
+ # [sq, b, np, hn] --> [sq, b, hp]
312
+ attn_output = attn_output.reshape(attn_output.size(0), attn_output.size(1), -1)
313
+
314
+ return attn_output, attn_weights
315
+
316
+ def forward(
317
+ self,
318
+ hidden_states: torch.Tensor,
319
+ layer_past: Optional[torch.Tensor] = None,
320
+ attention_mask: Optional[torch.Tensor] = None,
321
+ position_ids: Optional[torch.LongTensor] = None,
322
+ head_mask: Optional[torch.Tensor] = None,
323
+ encoder_hidden_states: Optional[torch.Tensor] = None,
324
+ encoder_attention_mask: Optional[torch.Tensor] = None,
325
+ use_cache: Optional[bool] = False,
326
+ output_attentions: Optional[bool] = False,
327
+ ) -> Union[
328
+ Tuple[torch.Tensor, Optional[torch.Tensor]],
329
+ Tuple[torch.Tensor, Optional[torch.Tensor], Tuple[torch.Tensor, ...]],
330
+ ]:
331
+ if self.group_query_attention:
332
+ query, key_value = self.c_attn(hidden_states).split((self.embed_dim, 2 * self.kv_dim), dim=2)
333
+ else:
334
+ # Note: We split as (self.num_heads, 3, self.head_dim) instead of (3, self.num_heads, self.head_dim),
335
+ # i.e., the memory layout is not the same as GPT2.
336
+ # This makes the concatenation with past_key_value more efficient.
337
+ query, key_value = (
338
+ self.c_attn(hidden_states)
339
+ .reshape(*hidden_states.shape[:2], self.num_heads, 3 * self.head_dim)
340
+ .transpose(1, 2)
341
+ .split((self.head_dim, 2 * self.head_dim), dim=3)
342
+ )
343
+
344
+ query = query.reshape(query.size(0), query.size(1), -1, self.head_dim)
345
+
346
+ key, value = key_value.split((self.head_dim*self.num_query_groups, self.head_dim*self.num_query_groups), dim=-1)
347
+ # expand the key_layer and value_layer [sk, b, ng, hn] -> [sk, b, np, hn]
348
+ key = key.reshape(key.size(0), key.size(1), -1, self.head_dim)
349
+ value = value.reshape(value.size(0), value.size(1), -1, self.head_dim)
350
+
351
+ key = key.repeat_interleave(
352
+ self.num_heads // self.num_query_groups,
353
+ dim = 2
354
+ )
355
+ value = value.repeat_interleave(
356
+ self.num_heads // self.num_query_groups,
357
+ dim = 2
358
+ )
359
+
360
+ if self.position_embedding_type == "rope":
361
+ kv_seq_len = key.shape[-3]
362
+ if layer_past is not None:
363
+ kv_seq_len += layer_past[0].shape[-3]
364
+
365
+ cos, sin = self.rotary_emb(value, seq_len=kv_seq_len)
366
+ query = query.transpose(1, 2).contiguous()
367
+ key = key.transpose(1, 2).contiguous()
368
+ query, key = apply_rotary_pos_emb(query, key, cos, sin, position_ids)
369
+ query = query.transpose(1, 2).contiguous()
370
+ key = key.transpose(1, 2).contiguous()
371
+
372
+ if layer_past is not None:
373
+ key = torch.cat((layer_past[0], key), dim=-3)
374
+ value = torch.cat((layer_past[1], value), dim=-3)
375
+ present = (key, value) if use_cache else None
376
+
377
+ attn_output, attn_weights = self._attn(query.transpose(0, 1), key.transpose(0, 1), value.transpose(0, 1), attention_mask, head_mask)
378
+
379
+ attn_output = attn_output.transpose(0, 1).reshape(hidden_states.shape)
380
+ attn_output = self.c_proj(attn_output)
381
+ attn_output = self.resid_dropout(attn_output)
382
+
383
+ outputs = (attn_output, present)
384
+ if output_attentions:
385
+ if self.group_query_attention:
386
+ # Transpose to return weights in the usual format (batch_size, num_heads, query_length, key_length)
387
+ attn_weights = attn_weights.transpose(1, 2)
388
+ outputs += (attn_weights,)
389
+
390
+ return outputs # a, present, (attentions)
391
+
392
+
393
+ class KCLGPTMLP(nn.Module):
394
+ def __init__(self, intermediate_size, config):
395
+ super().__init__()
396
+ embed_dim = config.hidden_size
397
+ self.c_fc = nn.Linear(embed_dim, intermediate_size)
398
+ self.c_proj = nn.Linear(intermediate_size, embed_dim)
399
+ self.act = ACT2FN[config.activation_function]
400
+ self.dropout = nn.Dropout(config.resid_pdrop)
401
+
402
+ # Copied from transformers.models.gpt2.modeling_gpt2.GPT2MLP.forward
403
+ def forward(self, hidden_states: Optional[Tuple[torch.Tensor]]) -> torch.Tensor:
404
+ hidden_states = self.c_fc(hidden_states)
405
+ hidden_states = self.act(hidden_states)
406
+ hidden_states = self.c_proj(hidden_states)
407
+ hidden_states = self.dropout(hidden_states)
408
+ return hidden_states
409
+
410
+
411
+ class KCLGPTBlock(nn.Module):
412
+ def __init__(self, config, layer_idx=None):
413
+ super().__init__()
414
+ hidden_size = config.hidden_size
415
+ self.inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
416
+
417
+ self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
418
+ self.attn = KCLGPTAttention(config, layer_idx=layer_idx)
419
+ self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
420
+
421
+ self.mlp = KCLGPTMLP(self.inner_dim, config)
422
+
423
+ def forward(
424
+ self,
425
+ hidden_states: Optional[Tuple[torch.Tensor]],
426
+ layer_past: Optional[torch.Tensor] = None,
427
+ attention_mask: Optional[torch.Tensor] = None,
428
+ position_ids: Optional[torch.LongTensor] = None,
429
+ head_mask: Optional[torch.Tensor] = None,
430
+ encoder_hidden_states: Optional[torch.Tensor] = None,
431
+ encoder_attention_mask: Optional[torch.Tensor] = None,
432
+ use_cache: Optional[bool] = False,
433
+ output_attentions: Optional[bool] = False,
434
+ ) -> Union[
435
+ Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.Tensor, torch.Tensor]
436
+ ]:
437
+ residual = hidden_states
438
+ hidden_states = self.ln_1(hidden_states)
439
+ attn_outputs = self.attn(
440
+ hidden_states,
441
+ layer_past=layer_past,
442
+ attention_mask=attention_mask,
443
+ position_ids=position_ids,
444
+ head_mask=head_mask,
445
+ use_cache=use_cache,
446
+ output_attentions=output_attentions,
447
+ )
448
+ attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
449
+
450
+ outputs = attn_outputs[1:]
451
+ # residual connection
452
+ hidden_states = attn_output + residual
453
+
454
+ residual = hidden_states
455
+ hidden_states = self.ln_2(hidden_states)
456
+ feed_forward_hidden_states = self.mlp(hidden_states)
457
+ # residual connection
458
+ hidden_states = residual + feed_forward_hidden_states
459
+
460
+ if use_cache:
461
+ outputs = (hidden_states,) + outputs
462
+ else:
463
+ outputs = (hidden_states,) + outputs[1:]
464
+
465
+ return outputs # hidden_states, present, (attentions, cross_attentions)
466
+
467
+
468
+ class KCLGPTPreTrainedModel(PreTrainedModel):
469
+ """
470
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
471
+ models.
472
+ """
473
+
474
+ config_class = KCLGPTConfig
475
+ base_model_prefix = "transformer"
476
+ supports_gradient_checkpointing = True
477
+ _no_split_modules = ["KCLGPTBlock"]
478
+ _skip_keys_device_placement = "past_key_values"
479
+
480
+ def __init__(self, *inputs, **kwargs):
481
+ super().__init__(*inputs, **kwargs)
482
+
483
+ def _init_weights(self, module):
484
+ """Initialize the weights."""
485
+ if isinstance(module, (KCLGPTMLP, KCLGPTAttention)):
486
+ # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
487
+ # > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
488
+ # > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
489
+ # > -- GPT-2 :: https://openai.com/blog/better-language-models/
490
+ #
491
+ # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
492
+ module.c_proj.weight.data.normal_(
493
+ mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer))
494
+ )
495
+ module.c_proj._is_hf_initialized = True
496
+ elif isinstance(module, nn.Linear):
497
+ # Slightly different from the TF version which uses truncated_normal for initialization
498
+ # cf https://github.com/pytorch/pytorch/pull/5617
499
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
500
+ if module.bias is not None:
501
+ module.bias.data.zero_()
502
+ elif isinstance(module, nn.Embedding):
503
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
504
+ if module.padding_idx is not None:
505
+ module.weight.data[module.padding_idx].zero_()
506
+ elif isinstance(module, nn.LayerNorm):
507
+ module.bias.data.zero_()
508
+ module.weight.data.fill_(1.0)
509
+
510
+ # Copied from transformers.models.gpt2.modeling_gpt2.GPT2PreTrainedModel._set_gradient_checkpointing with GPT2->KCLGPT
511
+ def _set_gradient_checkpointing(self, module, value=False):
512
+ if isinstance(module, KCLGPTModel):
513
+ module.gradient_checkpointing = value
514
+
515
+
516
+ GPT_BIGCODE_START_DOCSTRING = r"""
517
+
518
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
519
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
520
+ etc.)
521
+
522
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
523
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
524
+ and behavior.
525
+
526
+ Parameters:
527
+ config ([`KCLGPTConfig`]): Model configuration class with all the parameters of the model.
528
+ Initializing with a config file does not load the weights associated with the model, only the
529
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
530
+ """
531
+
532
+ GPT_BIGCODE_INPUTS_DOCSTRING = r"""
533
+ Args:
534
+ input_ids (`torch.Tensor` of shape `(batch_size, input_ids_length)`):
535
+ `input_ids_length` = `sequence_length` if `past_key_values` is `None` else
536
+ `past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
537
+ sequence tokens in the vocabulary.
538
+
539
+ If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
540
+ `input_ids`.
541
+
542
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
543
+ [`PreTrainedTokenizer.__call__`] for details.
544
+
545
+ [What are input IDs?](../glossary#input-ids)
546
+ past_key_values (`Tuple[torch.Tensor]` of length `config.n_layers`):
547
+ Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
548
+ `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
549
+ their past given to this model should not be passed as `input_ids` as they have already been computed.
550
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
551
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
552
+
553
+ - 1 for tokens that are **not masked**,
554
+ - 0 for tokens that are **masked**.
555
+
556
+ If `past_key_values` is used, `attention_mask` needs to contain the masking strategy that was used for
557
+ `past_key_values`. In other words, the `attention_mask` always has to have the length:
558
+ `len(past_key_values) + len(input_ids)`
559
+
560
+ [What are attention masks?](../glossary#attention-mask)
561
+ token_type_ids (`torch.Tensor` of shape `(batch_size, input_ids_length)`, *optional*):
562
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
563
+ 1]`:
564
+
565
+ - 0 corresponds to a *sentence A* token,
566
+ - 1 corresponds to a *sentence B* token.
567
+
568
+ [What are token type IDs?](../glossary#token-type-ids)
569
+ position_ids (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
570
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
571
+ config.max_position_embeddings - 1]`.
572
+
573
+ [What are position IDs?](../glossary#position-ids)
574
+ head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
575
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
576
+
577
+ - 1 indicates the head is **not masked**,
578
+ - 0 indicates the head is **masked**.
579
+
580
+ inputs_embeds (`torch.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
581
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
582
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
583
+ model's internal embedding lookup matrix.
584
+
585
+ If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
586
+ `past_key_values`).
587
+ use_cache (`bool`, *optional*):
588
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
589
+ `past_key_values`).
590
+ output_attentions (`bool`, *optional*):
591
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
592
+ tensors for more detail.
593
+ output_hidden_states (`bool`, *optional*):
594
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
595
+ more detail.
596
+ return_dict (`bool`, *optional*):
597
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
598
+ """
599
+
600
+
601
+ @add_start_docstrings(
602
+ "The bare GPT_BIGCODE Model transformer outputting raw hidden-states without any specific head on top.",
603
+ GPT_BIGCODE_START_DOCSTRING,
604
+ )
605
+ class KCLGPTModel(KCLGPTPreTrainedModel):
606
+ def __init__(self, config):
607
+ super().__init__(config)
608
+ self.group_query_attention = config.group_query_attention
609
+ self.num_query_groups = config.num_query_groups
610
+ self.position_embedding_type = config.position_embedding_type
611
+ self.embed_dim = config.hidden_size
612
+
613
+ self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
614
+ if self.position_embedding_type == "learned_absolute":
615
+ self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
616
+ else:
617
+ pass
618
+
619
+ self.drop = nn.Dropout(config.embd_pdrop)
620
+ self.h = nn.ModuleList([KCLGPTBlock(config, layer_idx=i) for i in range(config.num_hidden_layers)])
621
+ self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
622
+
623
+ max_positions = config.max_position_embeddings
624
+ self.register_buffer(
625
+ "bias", torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)), persistent=False
626
+ )
627
+
628
+ self.gradient_checkpointing = False
629
+
630
+ # Initialize weights and apply final processing
631
+ self.post_init()
632
+
633
+ def get_input_embeddings(self):
634
+ return self.wte
635
+
636
+ def set_input_embeddings(self, new_embeddings):
637
+ self.wte = new_embeddings
638
+
639
+ @add_start_docstrings_to_model_forward(GPT_BIGCODE_INPUTS_DOCSTRING)
640
+ def forward(
641
+ self,
642
+ input_ids: Optional[torch.Tensor] = None,
643
+ past_key_values: Optional[List[torch.Tensor]] = None,
644
+ attention_mask: Optional[torch.Tensor] = None,
645
+ token_type_ids: Optional[torch.Tensor] = None,
646
+ position_ids: Optional[torch.Tensor] = None,
647
+ head_mask: Optional[torch.Tensor] = None,
648
+ inputs_embeds: Optional[torch.Tensor] = None,
649
+ encoder_hidden_states: Optional[torch.Tensor] = None,
650
+ encoder_attention_mask: Optional[torch.Tensor] = None,
651
+ use_cache: Optional[bool] = None,
652
+ output_attentions: Optional[bool] = None,
653
+ output_hidden_states: Optional[bool] = None,
654
+ return_dict: Optional[bool] = None,
655
+ ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
656
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
657
+ output_hidden_states = (
658
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
659
+ )
660
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
661
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
662
+
663
+ if input_ids is not None and inputs_embeds is not None:
664
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
665
+ elif input_ids is not None:
666
+ input_shape = input_ids.size()
667
+ input_ids = input_ids.reshape(-1, input_shape[-1])
668
+ batch_size = input_ids.shape[0]
669
+ elif inputs_embeds is not None:
670
+ input_shape = inputs_embeds.size()[:-1]
671
+ batch_size = inputs_embeds.shape[0]
672
+ else:
673
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
674
+
675
+ if batch_size <= 0:
676
+ raise ValueError("batch_size has to be defined and > 0")
677
+
678
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
679
+
680
+ if token_type_ids is not None:
681
+ token_type_ids = token_type_ids.reshape(-1, input_shape[-1])
682
+ if position_ids is not None:
683
+ position_ids = position_ids.reshape(-1, input_shape[-1])
684
+
685
+ if past_key_values is None:
686
+ past_length = 0
687
+ past_key_values = tuple([None] * len(self.h))
688
+ else:
689
+ past_length = past_key_values[0][0].size(-3)
690
+
691
+ if attention_mask is not None and len(attention_mask.shape) == 2 and position_ids is None:
692
+ # create position_ids on the fly for batch generation
693
+ position_ids = attention_mask.long().cumsum(-1) - 1
694
+ position_ids.masked_fill_(attention_mask == 0, 1)
695
+ if past_length > 0:
696
+ position_ids = position_ids[:, past_length : input_shape[-1] + past_length :]
697
+ elif position_ids is None:
698
+ position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
699
+ position_ids = position_ids.unsqueeze(0).reshape(-1, input_shape[-1])
700
+
701
+ # Self-attention mask.
702
+ query_length = input_shape[-1]
703
+ key_length = past_length + query_length
704
+ self_attention_mask = self.bias[None, key_length - query_length : key_length, :key_length]
705
+
706
+ if attention_mask is not None:
707
+ self_attention_mask = self_attention_mask * attention_mask.reshape(batch_size, 1, -1).to(
708
+ dtype=torch.bool, device=self_attention_mask.device
709
+ )
710
+
711
+ # MQA models: (batch_size, query_length, n_heads, key_length)
712
+ # MHA models: (batch_size, n_heads, query_length, key_length)
713
+ attention_mask = self_attention_mask.unsqueeze(1)
714
+
715
+ encoder_attention_mask = None
716
+
717
+ # Prepare head mask if needed
718
+ # 1.0 in head_mask indicate we keep the head
719
+ # attention_probs has shape bsz x n_heads x N x N
720
+ # head_mask has shape n_layer x batch x n_heads x N x N
721
+ head_mask = self.get_head_mask(head_mask, self.config.n_layer)
722
+
723
+ if inputs_embeds is None:
724
+ inputs_embeds = self.wte(input_ids)
725
+
726
+ hidden_states = inputs_embeds
727
+ if self.position_embedding_type == "learned_absolute":
728
+ position_embeds = self.wpe(position_ids)
729
+ hidden_states = hidden_states + position_embeds
730
+
731
+ if token_type_ids is not None:
732
+ token_type_embeds = self.wte(token_type_ids)
733
+ hidden_states = hidden_states + token_type_embeds
734
+
735
+ hidden_states = self.drop(hidden_states)
736
+
737
+ output_shape = input_shape + (hidden_states.size(-1),)
738
+
739
+ presents = [] if use_cache else None
740
+ all_self_attentions = () if output_attentions else None
741
+ all_hidden_states = () if output_hidden_states else None
742
+ for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
743
+ if output_hidden_states:
744
+ all_hidden_states = all_hidden_states + (hidden_states,)
745
+
746
+ if self.gradient_checkpointing and self.training:
747
+
748
+ def create_custom_forward(module):
749
+ def custom_forward(*inputs):
750
+ # None for past_key_value
751
+ return module(*inputs, use_cache, output_attentions)
752
+
753
+ return custom_forward
754
+
755
+ outputs = torch.utils.checkpoint.checkpoint(
756
+ create_custom_forward(block),
757
+ hidden_states,
758
+ None,
759
+ attention_mask,
760
+ position_ids,
761
+ head_mask[i],
762
+ encoder_hidden_states,
763
+ encoder_attention_mask,
764
+ )
765
+ else:
766
+ outputs = block(
767
+ hidden_states,
768
+ layer_past=layer_past,
769
+ attention_mask=attention_mask,
770
+ position_ids=position_ids,
771
+ head_mask=head_mask[i],
772
+ encoder_hidden_states=encoder_hidden_states,
773
+ encoder_attention_mask=encoder_attention_mask,
774
+ use_cache=use_cache,
775
+ output_attentions=output_attentions,
776
+ )
777
+
778
+ hidden_states = outputs[0]
779
+ if use_cache:
780
+ presents.append(outputs[1])
781
+
782
+ if output_attentions:
783
+ all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
784
+
785
+ hidden_states = self.ln_f(hidden_states)
786
+ hidden_states = hidden_states.reshape(output_shape)
787
+ # Add last hidden state
788
+ if output_hidden_states:
789
+ all_hidden_states = all_hidden_states + (hidden_states,)
790
+
791
+
792
+ if not return_dict:
793
+ return tuple(
794
+ v
795
+ for v in [hidden_states, presents, all_hidden_states, all_self_attentions]
796
+ if v is not None
797
+ )
798
+
799
+ return BaseModelOutputWithPastAndCrossAttentions(
800
+ last_hidden_state=hidden_states,
801
+ past_key_values=presents,
802
+ hidden_states=all_hidden_states,
803
+ attentions=all_self_attentions,
804
+ )
805
+
806
+
807
+ @add_start_docstrings(
808
+ """
809
+ The GPT_BIGCODE Model transformer with a language modeling head on top (linear layer with weights tied to the input
810
+ embeddings).
811
+ """,
812
+ GPT_BIGCODE_START_DOCSTRING,
813
+ )
814
+ class KCLGPTForCausalLM(KCLGPTPreTrainedModel):
815
+ _tied_weights_keys = ["lm_head.weight"]
816
+
817
+ def __init__(self, config):
818
+ super().__init__(config)
819
+ self.transformer = KCLGPTModel(config)
820
+ self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
821
+
822
+ # Initialize weights and apply final processing
823
+ self.post_init()
824
+
825
+ def get_output_embeddings(self):
826
+ return self.lm_head
827
+
828
+ def set_output_embeddings(self, new_embeddings):
829
+ self.lm_head = new_embeddings
830
+
831
+ def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
832
+ token_type_ids = kwargs.get("token_type_ids", None)
833
+ # only last token for inputs_ids if past is defined in kwargs
834
+ if past_key_values:
835
+ input_ids = input_ids[:, -1].unsqueeze(-1)
836
+ if token_type_ids is not None:
837
+ token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
838
+
839
+ attention_mask = kwargs.get("attention_mask", None)
840
+ position_ids = kwargs.get("position_ids", None)
841
+
842
+ if attention_mask is not None and position_ids is None:
843
+ # create position_ids on the fly for batch generation
844
+ position_ids = attention_mask.long().cumsum(-1) - 1
845
+ position_ids.masked_fill_(attention_mask == 0, 1)
846
+ if past_key_values:
847
+ position_ids = position_ids[:, -1].unsqueeze(-1)
848
+ else:
849
+ position_ids = None
850
+
851
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
852
+ if inputs_embeds is not None and past_key_values is None:
853
+ model_inputs = {"inputs_embeds": inputs_embeds}
854
+ else:
855
+ model_inputs = {"input_ids": input_ids}
856
+
857
+ model_inputs.update(
858
+ {
859
+ "past_key_values": past_key_values,
860
+ "use_cache": kwargs.get("use_cache"),
861
+ "position_ids": position_ids,
862
+ "attention_mask": attention_mask,
863
+ "token_type_ids": token_type_ids,
864
+ }
865
+ )
866
+ return model_inputs
867
+
868
+ @add_start_docstrings_to_model_forward(GPT_BIGCODE_INPUTS_DOCSTRING)
869
+ def forward(
870
+ self,
871
+ input_ids: Optional[torch.Tensor] = None,
872
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
873
+ attention_mask: Optional[torch.Tensor] = None,
874
+ token_type_ids: Optional[torch.Tensor] = None,
875
+ position_ids: Optional[torch.Tensor] = None,
876
+ head_mask: Optional[torch.Tensor] = None,
877
+ inputs_embeds: Optional[torch.Tensor] = None,
878
+ encoder_hidden_states: Optional[torch.Tensor] = None,
879
+ encoder_attention_mask: Optional[torch.Tensor] = None,
880
+ labels: Optional[torch.Tensor] = None,
881
+ use_cache: Optional[bool] = None,
882
+ output_attentions: Optional[bool] = None,
883
+ output_hidden_states: Optional[bool] = None,
884
+ return_dict: Optional[bool] = None,
885
+ ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
886
+ r"""
887
+ labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
888
+ Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
889
+ `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
890
+ are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
891
+ """
892
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
893
+
894
+ transformer_outputs = self.transformer(
895
+ input_ids,
896
+ past_key_values=past_key_values,
897
+ attention_mask=attention_mask,
898
+ token_type_ids=token_type_ids,
899
+ position_ids=position_ids,
900
+ head_mask=head_mask,
901
+ inputs_embeds=inputs_embeds,
902
+ encoder_hidden_states=encoder_hidden_states,
903
+ encoder_attention_mask=encoder_attention_mask,
904
+ use_cache=use_cache,
905
+ output_attentions=output_attentions,
906
+ output_hidden_states=output_hidden_states,
907
+ return_dict=return_dict,
908
+ )
909
+ hidden_states = transformer_outputs[0]
910
+ lm_logits = self.lm_head(hidden_states)
911
+ loss = None
912
+ if labels is not None:
913
+ # Shift so that tokens < n predict n
914
+ shift_logits = lm_logits[..., :-1, :].contiguous()
915
+ shift_labels = labels[..., 1:].contiguous().to(shift_logits.device)
916
+ # Flatten the tokens
917
+ loss_fct = CrossEntropyLoss()
918
+ loss = loss_fct(shift_logits.reshape(-1, shift_logits.size(-1)), shift_labels.reshape(-1))
919
+
920
+ if not return_dict:
921
+ output = (lm_logits,) + transformer_outputs[1:]
922
+ return ((loss,) + output) if loss is not None else output
923
+
924
+ return CausalLMOutputWithCrossAttentions(
925
+ loss=loss,
926
+ logits=lm_logits,
927
+ past_key_values=transformer_outputs.past_key_values,
928
+ hidden_states=transformer_outputs.hidden_states,
929
+ attentions=transformer_outputs.attentions,
930
+ )
931
+
932
+ @staticmethod
933
+ def _reorder_cache(past_key_values, beam_idx):
934
+ reordered_past = ()
935
+ for layer_past in past_key_values:
936
+ reordered_past += (
937
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
938
+ )
939
+ return reordered_past
modeling_shell.py ADDED
@@ -0,0 +1,858 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The Bigcode team and HuggingFace Inc. team.
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """PyTorch Shell model."""
15
+ import math
16
+ from typing import List, Optional, Tuple, Union
17
+
18
+ import torch
19
+ import torch.utils.checkpoint
20
+ from torch import nn
21
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
22
+
23
+ from transformers.activations import ACT2FN
24
+ from transformers.modeling_outputs import (
25
+ BaseModelOutputWithPastAndCrossAttentions,
26
+ CausalLMOutputWithCrossAttentions,
27
+ )
28
+ from transformers.modeling_utils import PreTrainedModel
29
+ from transformers.utils import (
30
+ add_start_docstrings,
31
+ add_start_docstrings_to_model_forward,
32
+ logging,
33
+ )
34
+ from .configuration_shell import ShellConfig
35
+
36
+
37
+ logger = logging.get_logger(__name__)
38
+
39
+ # Fused kernels
40
+ # Use separate functions for each case because conditionals prevent kernel fusion.
41
+ # TODO: Could have better fused kernels depending on scaling, dropout and head mask.
42
+ # Is it doable without writing 32 functions?
43
+ @torch.jit.script
44
+ def upcast_masked_softmax(
45
+ x: torch.Tensor, mask: torch.Tensor, mask_value: torch.Tensor, scale: float, softmax_dtype: torch.dtype
46
+ ):
47
+ input_dtype = x.dtype
48
+ x = x.to(softmax_dtype) * scale
49
+ x = torch.where(mask, x, mask_value)
50
+ x = torch.nn.functional.softmax(x, dim=-1).to(input_dtype)
51
+ return x
52
+
53
+
54
+ @torch.jit.script
55
+ def upcast_softmax(x: torch.Tensor, scale: float, softmax_dtype: torch.dtype):
56
+ input_dtype = x.dtype
57
+ x = x.to(softmax_dtype) * scale
58
+ x = torch.nn.functional.softmax(x, dim=-1).to(input_dtype)
59
+ return x
60
+
61
+
62
+ @torch.jit.script
63
+ def masked_softmax(x: torch.Tensor, mask: torch.Tensor, mask_value: torch.Tensor):
64
+ x = torch.where(mask, x, mask_value)
65
+ x = torch.nn.functional.softmax(x, dim=-1)
66
+ return x
67
+
68
+
69
+ class ShellRotaryEmbedding(torch.nn.Module):
70
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
71
+ super().__init__()
72
+
73
+ self.dim = dim
74
+ self.max_position_embeddings = max_position_embeddings
75
+ self.base = base
76
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
77
+ self.register_buffer("inv_freq", inv_freq)
78
+
79
+ # Build here to make `torch.jit.trace` work.
80
+ self._set_cos_sin_cache(
81
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
82
+ )
83
+
84
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
85
+ self.max_seq_len_cached = seq_len
86
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
87
+
88
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
89
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
90
+ emb = torch.cat((freqs, freqs), dim=-1)
91
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
92
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
93
+
94
+ def forward(self, x, seq_len=None):
95
+ # x: [bs, num_attention_heads, seq_len, head_size]
96
+ if seq_len > self.max_seq_len_cached:
97
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
98
+
99
+ return (
100
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
101
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
102
+ )
103
+
104
+
105
+ class ShellLinearScalingRotaryEmbedding(ShellRotaryEmbedding):
106
+ """ShellRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
107
+
108
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
109
+ self.scaling_factor = scaling_factor
110
+ super().__init__(dim, max_position_embeddings, base, device)
111
+
112
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
113
+ self.max_seq_len_cached = seq_len
114
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
115
+ t = t / self.scaling_factor
116
+
117
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
118
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
119
+ emb = torch.cat((freqs, freqs), dim=-1)
120
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
121
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
122
+
123
+
124
+ class ShellDynamicNTKScalingRotaryEmbedding(ShellRotaryEmbedding):
125
+ """ShellRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
126
+
127
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
128
+ self.scaling_factor = scaling_factor
129
+ super().__init__(dim, max_position_embeddings, base, device)
130
+
131
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
132
+ self.max_seq_len_cached = seq_len
133
+
134
+ if seq_len > self.max_position_embeddings:
135
+ base = self.base * (
136
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
137
+ ) ** (self.dim / (self.dim - 2))
138
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
139
+ self.register_buffer("inv_freq", inv_freq)
140
+
141
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
142
+
143
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
144
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
145
+ emb = torch.cat((freqs, freqs), dim=-1)
146
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
147
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
148
+
149
+ def rotate_half(x):
150
+ """Rotates half the hidden dims of the input."""
151
+ x1 = x[..., : x.shape[-1] // 2]
152
+ x2 = x[..., x.shape[-1] // 2 :]
153
+ return torch.cat((-x2, x1), dim=-1)
154
+
155
+
156
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
157
+ # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
158
+ cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
159
+ sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
160
+ cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
161
+ sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
162
+ q_embed = (q * cos) + (rotate_half(q) * sin)
163
+ k_embed = (k * cos) + (rotate_half(k) * sin)
164
+ return q_embed, k_embed
165
+
166
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
167
+ """
168
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
169
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
170
+ """
171
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
172
+ if n_rep == 1:
173
+ return hidden_states
174
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
175
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
176
+
177
+ class ShellAttention(nn.Module):
178
+ def __init__(self, config, layer_idx=None):
179
+ super().__init__()
180
+ self.mask_value = None
181
+
182
+ self.position_embedding_type = config.position_embedding_type
183
+ self.rope_scaling = config.rope_scaling
184
+ self.max_position_embeddings = config.max_position_embeddings
185
+
186
+ self.group_query_attention = config.group_query_attention
187
+ self.num_query_groups = config.num_query_groups
188
+
189
+ self.embed_dim = config.hidden_size
190
+ self.num_heads = config.num_attention_heads
191
+ self.head_dim = self.embed_dim // self.num_heads
192
+ self.kv_heads = config.num_query_groups if self.group_query_attention else self.num_heads
193
+ self.kv_dim = self.kv_heads * self.head_dim
194
+ self.split_size = self.embed_dim
195
+ if self.head_dim * self.num_heads != self.embed_dim:
196
+ raise ValueError(
197
+ f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
198
+ f" {self.num_heads})."
199
+ )
200
+
201
+ self.layer_idx = layer_idx
202
+
203
+ self.c_attn = nn.Linear(self.embed_dim, self.embed_dim + 2 * self.kv_dim)
204
+ self.c_proj = nn.Linear(self.embed_dim, self.embed_dim)
205
+
206
+ self.attn_dropout = nn.Dropout(config.attn_pdrop)
207
+ self.resid_dropout = nn.Dropout(config.resid_pdrop)
208
+
209
+ if self.position_embedding_type == "rope":
210
+ self._init_rope()
211
+
212
+ def _init_rope(self):
213
+ if self.rope_scaling is None:
214
+ self.rotary_emb = ShellRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
215
+ else:
216
+ scaling_type = self.rope_scaling["type"]
217
+ scaling_factor = self.rope_scaling["factor"]
218
+ if scaling_type == "linear":
219
+ self.rotary_emb = ShellLinearScalingRotaryEmbedding(
220
+ self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
221
+ )
222
+ elif scaling_type == "dynamic":
223
+ self.rotary_emb = ShellDynamicNTKScalingRotaryEmbedding(
224
+ self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
225
+ )
226
+ else:
227
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
228
+
229
+
230
+ def _get_mask_value(self, device, dtype):
231
+ # torch.where expects a tensor. We use a cache to avoid recreating it every time.
232
+ if self.mask_value is None or self.mask_value.dtype != dtype or self.mask_value.device != device:
233
+ self.mask_value = torch.full([], torch.finfo(dtype).min, dtype=dtype, device=device)
234
+ return self.mask_value
235
+
236
+ def forward(
237
+ self,
238
+ hidden_states: torch.Tensor,
239
+ layer_past: Optional[torch.Tensor] = None,
240
+ attention_mask: Optional[torch.Tensor] = None,
241
+ position_ids: Optional[torch.LongTensor] = None,
242
+ head_mask: Optional[torch.Tensor] = None,
243
+ encoder_hidden_states: Optional[torch.Tensor] = None,
244
+ encoder_attention_mask: Optional[torch.Tensor] = None,
245
+ use_cache: Optional[bool] = False,
246
+ output_attentions: Optional[bool] = False,
247
+ ) -> Union[
248
+ Tuple[torch.Tensor, Optional[torch.Tensor]],
249
+ Tuple[torch.Tensor, Optional[torch.Tensor], Tuple[torch.Tensor, ...]],
250
+ ]:
251
+ bsz, q_len, _ = hidden_states.size()
252
+ query_states, key_states, value_states = self.c_attn(hidden_states).split((self.embed_dim, self.kv_dim, self.kv_dim), dim=2)
253
+
254
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
255
+ key_states = key_states.view(bsz, q_len, self.num_query_groups, self.head_dim).transpose(1, 2)
256
+ value_states = value_states.view(bsz, q_len, self.num_query_groups, self.head_dim).transpose(1, 2)
257
+
258
+ kv_seq_len = key_states.shape[-2]
259
+ if past_key_value is not None:
260
+ kv_seq_len += past_key_value[0].shape[-2]
261
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
262
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
263
+
264
+ if past_key_value is not None:
265
+ # reuse k, v, self_attention
266
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
267
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
268
+
269
+ past_key_value = (key_states, value_states) if use_cache else None
270
+
271
+ # repeat k/v heads if n_kv_heads < n_heads
272
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
273
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
274
+
275
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
276
+
277
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
278
+ raise ValueError(
279
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
280
+ f" {attn_weights.size()}"
281
+ )
282
+
283
+ if attention_mask is not None:
284
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
285
+ raise ValueError(
286
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
287
+ )
288
+ attn_weights = attn_weights + attention_mask
289
+
290
+ # upcast attention to fp32
291
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
292
+ attn_output = torch.matmul(attn_weights, value_states)
293
+
294
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
295
+ raise ValueError(
296
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
297
+ f" {attn_output.size()}"
298
+ )
299
+
300
+ attn_output = attn_output.transpose(1, 2).contiguous()
301
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
302
+
303
+ attn_output = self.o_proj(attn_output)
304
+
305
+ outputs = (attn_output, past_key_value)
306
+ if output_attentions:
307
+ outputs += (attn_weights,)
308
+
309
+ return outputs # a, present, (attentions)
310
+
311
+
312
+ class ShellMLP(nn.Module):
313
+ def __init__(self, intermediate_size, config):
314
+ super().__init__()
315
+ embed_dim = config.hidden_size
316
+ self.c_fc = nn.Linear(embed_dim, intermediate_size)
317
+ self.c_proj = nn.Linear(intermediate_size, embed_dim)
318
+ self.act = ACT2FN[config.activation_function]
319
+ self.dropout = nn.Dropout(config.resid_pdrop)
320
+
321
+ # Copied from transformers.models.gpt2.modeling_gpt2.GPT2MLP.forward
322
+ def forward(self, hidden_states: Optional[Tuple[torch.Tensor]]) -> torch.Tensor:
323
+ hidden_states = self.c_fc(hidden_states)
324
+ hidden_states = self.act(hidden_states)
325
+ hidden_states = self.c_proj(hidden_states)
326
+ hidden_states = self.dropout(hidden_states)
327
+ return hidden_states
328
+
329
+
330
+ class ShellBlock(nn.Module):
331
+ def __init__(self, config, layer_idx=None):
332
+ super().__init__()
333
+ hidden_size = config.hidden_size
334
+ self.inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
335
+
336
+ self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
337
+ self.attn = ShellAttention(config, layer_idx=layer_idx)
338
+ self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
339
+
340
+ self.mlp = ShellMLP(self.inner_dim, config)
341
+
342
+ def forward(
343
+ self,
344
+ hidden_states: Optional[Tuple[torch.Tensor]],
345
+ layer_past: Optional[torch.Tensor] = None,
346
+ attention_mask: Optional[torch.Tensor] = None,
347
+ position_ids: Optional[torch.LongTensor] = None,
348
+ head_mask: Optional[torch.Tensor] = None,
349
+ encoder_hidden_states: Optional[torch.Tensor] = None,
350
+ encoder_attention_mask: Optional[torch.Tensor] = None,
351
+ use_cache: Optional[bool] = False,
352
+ output_attentions: Optional[bool] = False,
353
+ ) -> Union[
354
+ Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.Tensor, torch.Tensor]
355
+ ]:
356
+ residual = hidden_states
357
+ hidden_states = self.ln_1(hidden_states)
358
+ attn_outputs = self.attn(
359
+ hidden_states,
360
+ layer_past=layer_past,
361
+ attention_mask=attention_mask,
362
+ position_ids=position_ids,
363
+ head_mask=head_mask,
364
+ use_cache=use_cache,
365
+ output_attentions=output_attentions,
366
+ )
367
+ attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
368
+
369
+ outputs = attn_outputs[1:]
370
+ # residual connection
371
+ hidden_states = attn_output + residual
372
+
373
+ residual = hidden_states
374
+ hidden_states = self.ln_2(hidden_states)
375
+ feed_forward_hidden_states = self.mlp(hidden_states)
376
+ # residual connection
377
+ hidden_states = residual + feed_forward_hidden_states
378
+
379
+ if use_cache:
380
+ outputs = (hidden_states,) + outputs
381
+ else:
382
+ outputs = (hidden_states,) + outputs[1:]
383
+
384
+ return outputs # hidden_states, present, (attentions, cross_attentions)
385
+
386
+
387
+ class ShellPreTrainedModel(PreTrainedModel):
388
+ """
389
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
390
+ models.
391
+ """
392
+
393
+ config_class = ShellConfig
394
+ base_model_prefix = "transformer"
395
+ supports_gradient_checkpointing = True
396
+ _no_split_modules = ["ShellBlock"]
397
+ _skip_keys_device_placement = "past_key_values"
398
+
399
+ def __init__(self, *inputs, **kwargs):
400
+ super().__init__(*inputs, **kwargs)
401
+
402
+ def _init_weights(self, module):
403
+ """Initialize the weights."""
404
+ if isinstance(module, (ShellMLP, ShellAttention)):
405
+ # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
406
+ # > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
407
+ # > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
408
+ # > -- GPT-2 :: https://openai.com/blog/better-language-models/
409
+ #
410
+ # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
411
+ module.c_proj.weight.data.normal_(
412
+ mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer))
413
+ )
414
+ module.c_proj._is_hf_initialized = True
415
+ elif isinstance(module, nn.Linear):
416
+ # Slightly different from the TF version which uses truncated_normal for initialization
417
+ # cf https://github.com/pytorch/pytorch/pull/5617
418
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
419
+ if module.bias is not None:
420
+ module.bias.data.zero_()
421
+ elif isinstance(module, nn.Embedding):
422
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
423
+ if module.padding_idx is not None:
424
+ module.weight.data[module.padding_idx].zero_()
425
+ elif isinstance(module, nn.LayerNorm):
426
+ module.bias.data.zero_()
427
+ module.weight.data.fill_(1.0)
428
+
429
+ # Copied from transformers.models.gpt2.modeling_gpt2.GPT2PreTrainedModel._set_gradient_checkpointing with GPT2->Shell
430
+ def _set_gradient_checkpointing(self, module, value=False):
431
+ if isinstance(module, ShellModel):
432
+ module.gradient_checkpointing = value
433
+
434
+
435
+ GPT_BIGCODE_START_DOCSTRING = r"""
436
+
437
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
438
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
439
+ etc.)
440
+
441
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
442
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
443
+ and behavior.
444
+
445
+ Parameters:
446
+ config ([`ShellConfig`]): Model configuration class with all the parameters of the model.
447
+ Initializing with a config file does not load the weights associated with the model, only the
448
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
449
+ """
450
+
451
+ GPT_BIGCODE_INPUTS_DOCSTRING = r"""
452
+ Args:
453
+ input_ids (`torch.Tensor` of shape `(batch_size, input_ids_length)`):
454
+ `input_ids_length` = `sequence_length` if `past_key_values` is `None` else
455
+ `past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
456
+ sequence tokens in the vocabulary.
457
+
458
+ If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
459
+ `input_ids`.
460
+
461
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
462
+ [`PreTrainedTokenizer.__call__`] for details.
463
+
464
+ [What are input IDs?](../glossary#input-ids)
465
+ past_key_values (`Tuple[torch.Tensor]` of length `config.n_layers`):
466
+ Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
467
+ `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
468
+ their past given to this model should not be passed as `input_ids` as they have already been computed.
469
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
470
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
471
+
472
+ - 1 for tokens that are **not masked**,
473
+ - 0 for tokens that are **masked**.
474
+
475
+ If `past_key_values` is used, `attention_mask` needs to contain the masking strategy that was used for
476
+ `past_key_values`. In other words, the `attention_mask` always has to have the length:
477
+ `len(past_key_values) + len(input_ids)`
478
+
479
+ [What are attention masks?](../glossary#attention-mask)
480
+ token_type_ids (`torch.Tensor` of shape `(batch_size, input_ids_length)`, *optional*):
481
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
482
+ 1]`:
483
+
484
+ - 0 corresponds to a *sentence A* token,
485
+ - 1 corresponds to a *sentence B* token.
486
+
487
+ [What are token type IDs?](../glossary#token-type-ids)
488
+ position_ids (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
489
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
490
+ config.max_position_embeddings - 1]`.
491
+
492
+ [What are position IDs?](../glossary#position-ids)
493
+ head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
494
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
495
+
496
+ - 1 indicates the head is **not masked**,
497
+ - 0 indicates the head is **masked**.
498
+
499
+ inputs_embeds (`torch.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
500
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
501
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
502
+ model's internal embedding lookup matrix.
503
+
504
+ If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
505
+ `past_key_values`).
506
+ use_cache (`bool`, *optional*):
507
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
508
+ `past_key_values`).
509
+ output_attentions (`bool`, *optional*):
510
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
511
+ tensors for more detail.
512
+ output_hidden_states (`bool`, *optional*):
513
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
514
+ more detail.
515
+ return_dict (`bool`, *optional*):
516
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
517
+ """
518
+
519
+
520
+ @add_start_docstrings(
521
+ "The bare GPT_BIGCODE Model transformer outputting raw hidden-states without any specific head on top.",
522
+ GPT_BIGCODE_START_DOCSTRING,
523
+ )
524
+ class ShellModel(ShellPreTrainedModel):
525
+ def __init__(self, config):
526
+ super().__init__(config)
527
+ self.group_query_attention = config.group_query_attention
528
+ self.num_query_groups = config.num_query_groups
529
+ self.position_embedding_type = config.position_embedding_type
530
+ self.embed_dim = config.hidden_size
531
+
532
+ self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
533
+ if self.position_embedding_type == "learned_absolute":
534
+ self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
535
+ else:
536
+ pass
537
+
538
+ self.drop = nn.Dropout(config.embd_pdrop)
539
+ self.h = nn.ModuleList([ShellBlock(config, layer_idx=i) for i in range(config.num_hidden_layers)])
540
+ self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
541
+
542
+ max_positions = config.max_position_embeddings
543
+ self.register_buffer(
544
+ "bias", torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)), persistent=False
545
+ )
546
+
547
+ self.gradient_checkpointing = False
548
+
549
+ # Initialize weights and apply final processing
550
+ self.post_init()
551
+
552
+ def get_input_embeddings(self):
553
+ return self.wte
554
+
555
+ def set_input_embeddings(self, new_embeddings):
556
+ self.wte = new_embeddings
557
+
558
+ @add_start_docstrings_to_model_forward(GPT_BIGCODE_INPUTS_DOCSTRING)
559
+ def forward(
560
+ self,
561
+ input_ids: Optional[torch.Tensor] = None,
562
+ past_key_values: Optional[List[torch.Tensor]] = None,
563
+ attention_mask: Optional[torch.Tensor] = None,
564
+ token_type_ids: Optional[torch.Tensor] = None,
565
+ position_ids: Optional[torch.Tensor] = None,
566
+ head_mask: Optional[torch.Tensor] = None,
567
+ inputs_embeds: Optional[torch.Tensor] = None,
568
+ encoder_hidden_states: Optional[torch.Tensor] = None,
569
+ encoder_attention_mask: Optional[torch.Tensor] = None,
570
+ use_cache: Optional[bool] = None,
571
+ output_attentions: Optional[bool] = None,
572
+ output_hidden_states: Optional[bool] = None,
573
+ return_dict: Optional[bool] = None,
574
+ ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
575
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
576
+ output_hidden_states = (
577
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
578
+ )
579
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
580
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
581
+
582
+ if input_ids is not None and inputs_embeds is not None:
583
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
584
+ elif input_ids is not None:
585
+ input_shape = input_ids.size()
586
+ input_ids = input_ids.reshape(-1, input_shape[-1])
587
+ batch_size = input_ids.shape[0]
588
+ elif inputs_embeds is not None:
589
+ input_shape = inputs_embeds.size()[:-1]
590
+ batch_size = inputs_embeds.shape[0]
591
+ else:
592
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
593
+
594
+ if batch_size <= 0:
595
+ raise ValueError("batch_size has to be defined and > 0")
596
+
597
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
598
+
599
+ if token_type_ids is not None:
600
+ token_type_ids = token_type_ids.reshape(-1, input_shape[-1])
601
+ if position_ids is not None:
602
+ position_ids = position_ids.reshape(-1, input_shape[-1])
603
+
604
+ if past_key_values is None:
605
+ past_length = 0
606
+ past_key_values = tuple([None] * len(self.h))
607
+ else:
608
+ past_length = past_key_values[0][0].size(-3)
609
+
610
+ if attention_mask is not None and len(attention_mask.shape) == 2 and position_ids is None:
611
+ # create position_ids on the fly for batch generation
612
+ position_ids = attention_mask.long().cumsum(-1) - 1
613
+ position_ids.masked_fill_(attention_mask == 0, 1)
614
+ if past_length > 0:
615
+ position_ids = position_ids[:, past_length : input_shape[-1] + past_length :]
616
+ elif position_ids is None:
617
+ position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
618
+ position_ids = position_ids.unsqueeze(0).reshape(-1, input_shape[-1])
619
+
620
+ # Self-attention mask.
621
+ query_length = input_shape[-1]
622
+ key_length = past_length + query_length
623
+ self_attention_mask = self.bias[None, key_length - query_length : key_length, :key_length]
624
+
625
+ if attention_mask is not None:
626
+ self_attention_mask = self_attention_mask * attention_mask.reshape(batch_size, 1, -1).to(
627
+ dtype=torch.bool, device=self_attention_mask.device
628
+ )
629
+
630
+ # MQA models: (batch_size, query_length, n_heads, key_length)
631
+ # MHA models: (batch_size, n_heads, query_length, key_length)
632
+ attention_mask = self_attention_mask.unsqueeze(1)
633
+
634
+ encoder_attention_mask = None
635
+
636
+ # Prepare head mask if needed
637
+ # 1.0 in head_mask indicate we keep the head
638
+ # attention_probs has shape bsz x n_heads x N x N
639
+ # head_mask has shape n_layer x batch x n_heads x N x N
640
+ head_mask = self.get_head_mask(head_mask, self.config.n_layer)
641
+
642
+ if inputs_embeds is None:
643
+ inputs_embeds = self.wte(input_ids)
644
+
645
+ hidden_states = inputs_embeds
646
+ if self.position_embedding_type == "learned_absolute":
647
+ position_embeds = self.wpe(position_ids)
648
+ hidden_states = hidden_states + position_embeds
649
+
650
+ if token_type_ids is not None:
651
+ token_type_embeds = self.wte(token_type_ids)
652
+ hidden_states = hidden_states + token_type_embeds
653
+
654
+ hidden_states = self.drop(hidden_states)
655
+
656
+ output_shape = input_shape + (hidden_states.size(-1),)
657
+
658
+ presents = [] if use_cache else None
659
+ all_self_attentions = () if output_attentions else None
660
+ all_hidden_states = () if output_hidden_states else None
661
+ for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
662
+ if output_hidden_states:
663
+ all_hidden_states = all_hidden_states + (hidden_states,)
664
+
665
+ if self.gradient_checkpointing and self.training:
666
+
667
+ def create_custom_forward(module):
668
+ def custom_forward(*inputs):
669
+ # None for past_key_value
670
+ return module(*inputs, use_cache, output_attentions)
671
+
672
+ return custom_forward
673
+
674
+ outputs = torch.utils.checkpoint.checkpoint(
675
+ create_custom_forward(block),
676
+ hidden_states,
677
+ None,
678
+ attention_mask,
679
+ position_ids,
680
+ head_mask[i],
681
+ encoder_hidden_states,
682
+ encoder_attention_mask,
683
+ )
684
+ else:
685
+ outputs = block(
686
+ hidden_states,
687
+ layer_past=layer_past,
688
+ attention_mask=attention_mask,
689
+ position_ids=position_ids,
690
+ head_mask=head_mask[i],
691
+ encoder_hidden_states=encoder_hidden_states,
692
+ encoder_attention_mask=encoder_attention_mask,
693
+ use_cache=use_cache,
694
+ output_attentions=output_attentions,
695
+ )
696
+
697
+ hidden_states = outputs[0]
698
+ if use_cache:
699
+ presents.append(outputs[1])
700
+
701
+ if output_attentions:
702
+ all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
703
+
704
+ hidden_states = self.ln_f(hidden_states)
705
+ hidden_states = hidden_states.reshape(output_shape)
706
+ # Add last hidden state
707
+ if output_hidden_states:
708
+ all_hidden_states = all_hidden_states + (hidden_states,)
709
+
710
+
711
+ if not return_dict:
712
+ return tuple(
713
+ v
714
+ for v in [hidden_states, presents, all_hidden_states, all_self_attentions]
715
+ if v is not None
716
+ )
717
+
718
+ return BaseModelOutputWithPastAndCrossAttentions(
719
+ last_hidden_state=hidden_states,
720
+ past_key_values=presents,
721
+ hidden_states=all_hidden_states,
722
+ attentions=all_self_attentions,
723
+ )
724
+
725
+
726
+ @add_start_docstrings(
727
+ """
728
+ The GPT_BIGCODE Model transformer with a language modeling head on top (linear layer with weights tied to the input
729
+ embeddings).
730
+ """,
731
+ GPT_BIGCODE_START_DOCSTRING,
732
+ )
733
+ class ShellForCausalLM(ShellPreTrainedModel):
734
+ _tied_weights_keys = ["lm_head.weight"]
735
+
736
+ def __init__(self, config):
737
+ super().__init__(config)
738
+ self.transformer = ShellModel(config)
739
+ self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
740
+
741
+ # Initialize weights and apply final processing
742
+ self.post_init()
743
+
744
+ def get_output_embeddings(self):
745
+ return self.lm_head
746
+
747
+ def set_output_embeddings(self, new_embeddings):
748
+ self.lm_head = new_embeddings
749
+
750
+ def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
751
+ token_type_ids = kwargs.get("token_type_ids", None)
752
+ # only last token for inputs_ids if past is defined in kwargs
753
+ if past_key_values:
754
+ input_ids = input_ids[:, -1].unsqueeze(-1)
755
+ if token_type_ids is not None:
756
+ token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
757
+
758
+ attention_mask = kwargs.get("attention_mask", None)
759
+ position_ids = kwargs.get("position_ids", None)
760
+
761
+ if attention_mask is not None and position_ids is None:
762
+ # create position_ids on the fly for batch generation
763
+ position_ids = attention_mask.long().cumsum(-1) - 1
764
+ position_ids.masked_fill_(attention_mask == 0, 1)
765
+ if past_key_values:
766
+ position_ids = position_ids[:, -1].unsqueeze(-1)
767
+ else:
768
+ position_ids = None
769
+
770
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
771
+ if inputs_embeds is not None and past_key_values is None:
772
+ model_inputs = {"inputs_embeds": inputs_embeds}
773
+ else:
774
+ model_inputs = {"input_ids": input_ids}
775
+
776
+ model_inputs.update(
777
+ {
778
+ "past_key_values": past_key_values,
779
+ "use_cache": kwargs.get("use_cache"),
780
+ "position_ids": position_ids,
781
+ "attention_mask": attention_mask,
782
+ "token_type_ids": token_type_ids,
783
+ }
784
+ )
785
+ return model_inputs
786
+
787
+ @add_start_docstrings_to_model_forward(GPT_BIGCODE_INPUTS_DOCSTRING)
788
+ def forward(
789
+ self,
790
+ input_ids: Optional[torch.Tensor] = None,
791
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
792
+ attention_mask: Optional[torch.Tensor] = None,
793
+ token_type_ids: Optional[torch.Tensor] = None,
794
+ position_ids: Optional[torch.Tensor] = None,
795
+ head_mask: Optional[torch.Tensor] = None,
796
+ inputs_embeds: Optional[torch.Tensor] = None,
797
+ encoder_hidden_states: Optional[torch.Tensor] = None,
798
+ encoder_attention_mask: Optional[torch.Tensor] = None,
799
+ labels: Optional[torch.Tensor] = None,
800
+ use_cache: Optional[bool] = None,
801
+ output_attentions: Optional[bool] = None,
802
+ output_hidden_states: Optional[bool] = None,
803
+ return_dict: Optional[bool] = None,
804
+ ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
805
+ r"""
806
+ labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
807
+ Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
808
+ `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
809
+ are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
810
+ """
811
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
812
+
813
+ transformer_outputs = self.transformer(
814
+ input_ids,
815
+ past_key_values=past_key_values,
816
+ attention_mask=attention_mask,
817
+ token_type_ids=token_type_ids,
818
+ position_ids=position_ids,
819
+ head_mask=head_mask,
820
+ inputs_embeds=inputs_embeds,
821
+ encoder_hidden_states=encoder_hidden_states,
822
+ encoder_attention_mask=encoder_attention_mask,
823
+ use_cache=use_cache,
824
+ output_attentions=output_attentions,
825
+ output_hidden_states=output_hidden_states,
826
+ return_dict=return_dict,
827
+ )
828
+ hidden_states = transformer_outputs[0]
829
+ lm_logits = self.lm_head(hidden_states)
830
+ loss = None
831
+ if labels is not None:
832
+ # Shift so that tokens < n predict n
833
+ shift_logits = lm_logits[..., :-1, :].contiguous()
834
+ shift_labels = labels[..., 1:].contiguous().to(shift_logits.device)
835
+ # Flatten the tokens
836
+ loss_fct = CrossEntropyLoss()
837
+ loss = loss_fct(shift_logits.reshape(-1, shift_logits.size(-1)), shift_labels.reshape(-1))
838
+
839
+ if not return_dict:
840
+ output = (lm_logits,) + transformer_outputs[1:]
841
+ return ((loss,) + output) if loss is not None else output
842
+
843
+ return CausalLMOutputWithCrossAttentions(
844
+ loss=loss,
845
+ logits=lm_logits,
846
+ past_key_values=transformer_outputs.past_key_values,
847
+ hidden_states=transformer_outputs.hidden_states,
848
+ attentions=transformer_outputs.attentions,
849
+ )
850
+
851
+ @staticmethod
852
+ def _reorder_cache(past_key_values, beam_idx):
853
+ reordered_past = ()
854
+ for layer_past in past_key_values:
855
+ reordered_past += (
856
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
857
+ )
858
+ return reordered_past
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,557 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15950722304
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00002-of-00002.bin",
7
+ "transformer.h.0.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
8
+ "transformer.h.0.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
9
+ "transformer.h.0.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
10
+ "transformer.h.0.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
11
+ "transformer.h.0.attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
12
+ "transformer.h.0.ln_1.bias": "pytorch_model-00001-of-00002.bin",
13
+ "transformer.h.0.ln_1.weight": "pytorch_model-00001-of-00002.bin",
14
+ "transformer.h.0.ln_2.bias": "pytorch_model-00001-of-00002.bin",
15
+ "transformer.h.0.ln_2.weight": "pytorch_model-00001-of-00002.bin",
16
+ "transformer.h.0.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
17
+ "transformer.h.0.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
18
+ "transformer.h.0.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
19
+ "transformer.h.0.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
20
+ "transformer.h.1.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
21
+ "transformer.h.1.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
22
+ "transformer.h.1.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
23
+ "transformer.h.1.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
24
+ "transformer.h.1.attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
25
+ "transformer.h.1.ln_1.bias": "pytorch_model-00001-of-00002.bin",
26
+ "transformer.h.1.ln_1.weight": "pytorch_model-00001-of-00002.bin",
27
+ "transformer.h.1.ln_2.bias": "pytorch_model-00001-of-00002.bin",
28
+ "transformer.h.1.ln_2.weight": "pytorch_model-00001-of-00002.bin",
29
+ "transformer.h.1.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
30
+ "transformer.h.1.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
31
+ "transformer.h.1.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
32
+ "transformer.h.1.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
33
+ "transformer.h.10.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
34
+ "transformer.h.10.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
35
+ "transformer.h.10.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
36
+ "transformer.h.10.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
37
+ "transformer.h.10.attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
38
+ "transformer.h.10.ln_1.bias": "pytorch_model-00001-of-00002.bin",
39
+ "transformer.h.10.ln_1.weight": "pytorch_model-00001-of-00002.bin",
40
+ "transformer.h.10.ln_2.bias": "pytorch_model-00001-of-00002.bin",
41
+ "transformer.h.10.ln_2.weight": "pytorch_model-00001-of-00002.bin",
42
+ "transformer.h.10.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
43
+ "transformer.h.10.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
44
+ "transformer.h.10.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
45
+ "transformer.h.10.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
46
+ "transformer.h.11.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
47
+ "transformer.h.11.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
48
+ "transformer.h.11.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
49
+ "transformer.h.11.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
50
+ "transformer.h.11.attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
51
+ "transformer.h.11.ln_1.bias": "pytorch_model-00001-of-00002.bin",
52
+ "transformer.h.11.ln_1.weight": "pytorch_model-00001-of-00002.bin",
53
+ "transformer.h.11.ln_2.bias": "pytorch_model-00001-of-00002.bin",
54
+ "transformer.h.11.ln_2.weight": "pytorch_model-00001-of-00002.bin",
55
+ "transformer.h.11.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
56
+ "transformer.h.11.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
57
+ "transformer.h.11.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
58
+ "transformer.h.11.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
59
+ "transformer.h.12.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
60
+ "transformer.h.12.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
61
+ "transformer.h.12.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
62
+ "transformer.h.12.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
63
+ "transformer.h.12.attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
64
+ "transformer.h.12.ln_1.bias": "pytorch_model-00001-of-00002.bin",
65
+ "transformer.h.12.ln_1.weight": "pytorch_model-00001-of-00002.bin",
66
+ "transformer.h.12.ln_2.bias": "pytorch_model-00001-of-00002.bin",
67
+ "transformer.h.12.ln_2.weight": "pytorch_model-00001-of-00002.bin",
68
+ "transformer.h.12.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
69
+ "transformer.h.12.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
70
+ "transformer.h.12.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
71
+ "transformer.h.12.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
72
+ "transformer.h.13.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
73
+ "transformer.h.13.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
74
+ "transformer.h.13.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
75
+ "transformer.h.13.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
76
+ "transformer.h.13.attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
77
+ "transformer.h.13.ln_1.bias": "pytorch_model-00001-of-00002.bin",
78
+ "transformer.h.13.ln_1.weight": "pytorch_model-00001-of-00002.bin",
79
+ "transformer.h.13.ln_2.bias": "pytorch_model-00001-of-00002.bin",
80
+ "transformer.h.13.ln_2.weight": "pytorch_model-00001-of-00002.bin",
81
+ "transformer.h.13.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
82
+ "transformer.h.13.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
83
+ "transformer.h.13.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
84
+ "transformer.h.13.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
85
+ "transformer.h.14.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
86
+ "transformer.h.14.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
87
+ "transformer.h.14.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
88
+ "transformer.h.14.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
89
+ "transformer.h.14.attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
90
+ "transformer.h.14.ln_1.bias": "pytorch_model-00001-of-00002.bin",
91
+ "transformer.h.14.ln_1.weight": "pytorch_model-00001-of-00002.bin",
92
+ "transformer.h.14.ln_2.bias": "pytorch_model-00001-of-00002.bin",
93
+ "transformer.h.14.ln_2.weight": "pytorch_model-00001-of-00002.bin",
94
+ "transformer.h.14.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
95
+ "transformer.h.14.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
96
+ "transformer.h.14.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
97
+ "transformer.h.14.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
98
+ "transformer.h.15.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
99
+ "transformer.h.15.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
100
+ "transformer.h.15.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
101
+ "transformer.h.15.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
102
+ "transformer.h.15.attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
103
+ "transformer.h.15.ln_1.bias": "pytorch_model-00001-of-00002.bin",
104
+ "transformer.h.15.ln_1.weight": "pytorch_model-00001-of-00002.bin",
105
+ "transformer.h.15.ln_2.bias": "pytorch_model-00001-of-00002.bin",
106
+ "transformer.h.15.ln_2.weight": "pytorch_model-00001-of-00002.bin",
107
+ "transformer.h.15.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
108
+ "transformer.h.15.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
109
+ "transformer.h.15.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
110
+ "transformer.h.15.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
111
+ "transformer.h.16.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
112
+ "transformer.h.16.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
113
+ "transformer.h.16.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
114
+ "transformer.h.16.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
115
+ "transformer.h.16.attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
116
+ "transformer.h.16.ln_1.bias": "pytorch_model-00001-of-00002.bin",
117
+ "transformer.h.16.ln_1.weight": "pytorch_model-00001-of-00002.bin",
118
+ "transformer.h.16.ln_2.bias": "pytorch_model-00001-of-00002.bin",
119
+ "transformer.h.16.ln_2.weight": "pytorch_model-00001-of-00002.bin",
120
+ "transformer.h.16.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
121
+ "transformer.h.16.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
122
+ "transformer.h.16.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
123
+ "transformer.h.16.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
124
+ "transformer.h.17.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
125
+ "transformer.h.17.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
126
+ "transformer.h.17.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
127
+ "transformer.h.17.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
128
+ "transformer.h.17.attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
129
+ "transformer.h.17.ln_1.bias": "pytorch_model-00001-of-00002.bin",
130
+ "transformer.h.17.ln_1.weight": "pytorch_model-00001-of-00002.bin",
131
+ "transformer.h.17.ln_2.bias": "pytorch_model-00001-of-00002.bin",
132
+ "transformer.h.17.ln_2.weight": "pytorch_model-00001-of-00002.bin",
133
+ "transformer.h.17.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
134
+ "transformer.h.17.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
135
+ "transformer.h.17.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
136
+ "transformer.h.17.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
137
+ "transformer.h.18.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
138
+ "transformer.h.18.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
139
+ "transformer.h.18.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
140
+ "transformer.h.18.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
141
+ "transformer.h.18.attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
142
+ "transformer.h.18.ln_1.bias": "pytorch_model-00001-of-00002.bin",
143
+ "transformer.h.18.ln_1.weight": "pytorch_model-00001-of-00002.bin",
144
+ "transformer.h.18.ln_2.bias": "pytorch_model-00001-of-00002.bin",
145
+ "transformer.h.18.ln_2.weight": "pytorch_model-00001-of-00002.bin",
146
+ "transformer.h.18.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
147
+ "transformer.h.18.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
148
+ "transformer.h.18.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
149
+ "transformer.h.18.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
150
+ "transformer.h.19.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
151
+ "transformer.h.19.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
152
+ "transformer.h.19.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
153
+ "transformer.h.19.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
154
+ "transformer.h.19.attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
155
+ "transformer.h.19.ln_1.bias": "pytorch_model-00001-of-00002.bin",
156
+ "transformer.h.19.ln_1.weight": "pytorch_model-00001-of-00002.bin",
157
+ "transformer.h.19.ln_2.bias": "pytorch_model-00001-of-00002.bin",
158
+ "transformer.h.19.ln_2.weight": "pytorch_model-00001-of-00002.bin",
159
+ "transformer.h.19.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
160
+ "transformer.h.19.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
161
+ "transformer.h.19.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
162
+ "transformer.h.19.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
163
+ "transformer.h.2.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
164
+ "transformer.h.2.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
165
+ "transformer.h.2.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
166
+ "transformer.h.2.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
167
+ "transformer.h.2.attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
168
+ "transformer.h.2.ln_1.bias": "pytorch_model-00001-of-00002.bin",
169
+ "transformer.h.2.ln_1.weight": "pytorch_model-00001-of-00002.bin",
170
+ "transformer.h.2.ln_2.bias": "pytorch_model-00001-of-00002.bin",
171
+ "transformer.h.2.ln_2.weight": "pytorch_model-00001-of-00002.bin",
172
+ "transformer.h.2.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
173
+ "transformer.h.2.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
174
+ "transformer.h.2.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
175
+ "transformer.h.2.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
176
+ "transformer.h.20.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
177
+ "transformer.h.20.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
178
+ "transformer.h.20.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
179
+ "transformer.h.20.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
180
+ "transformer.h.20.attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
181
+ "transformer.h.20.ln_1.bias": "pytorch_model-00001-of-00002.bin",
182
+ "transformer.h.20.ln_1.weight": "pytorch_model-00001-of-00002.bin",
183
+ "transformer.h.20.ln_2.bias": "pytorch_model-00001-of-00002.bin",
184
+ "transformer.h.20.ln_2.weight": "pytorch_model-00001-of-00002.bin",
185
+ "transformer.h.20.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
186
+ "transformer.h.20.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
187
+ "transformer.h.20.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
188
+ "transformer.h.20.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
189
+ "transformer.h.21.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
190
+ "transformer.h.21.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
191
+ "transformer.h.21.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
192
+ "transformer.h.21.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
193
+ "transformer.h.21.attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
194
+ "transformer.h.21.ln_1.bias": "pytorch_model-00001-of-00002.bin",
195
+ "transformer.h.21.ln_1.weight": "pytorch_model-00001-of-00002.bin",
196
+ "transformer.h.21.ln_2.bias": "pytorch_model-00001-of-00002.bin",
197
+ "transformer.h.21.ln_2.weight": "pytorch_model-00001-of-00002.bin",
198
+ "transformer.h.21.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
199
+ "transformer.h.21.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
200
+ "transformer.h.21.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
201
+ "transformer.h.21.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
202
+ "transformer.h.22.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
203
+ "transformer.h.22.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
204
+ "transformer.h.22.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
205
+ "transformer.h.22.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
206
+ "transformer.h.22.attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
207
+ "transformer.h.22.ln_1.bias": "pytorch_model-00001-of-00002.bin",
208
+ "transformer.h.22.ln_1.weight": "pytorch_model-00001-of-00002.bin",
209
+ "transformer.h.22.ln_2.bias": "pytorch_model-00001-of-00002.bin",
210
+ "transformer.h.22.ln_2.weight": "pytorch_model-00001-of-00002.bin",
211
+ "transformer.h.22.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
212
+ "transformer.h.22.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
213
+ "transformer.h.22.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
214
+ "transformer.h.22.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
215
+ "transformer.h.23.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
216
+ "transformer.h.23.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
217
+ "transformer.h.23.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
218
+ "transformer.h.23.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
219
+ "transformer.h.23.attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
220
+ "transformer.h.23.ln_1.bias": "pytorch_model-00001-of-00002.bin",
221
+ "transformer.h.23.ln_1.weight": "pytorch_model-00001-of-00002.bin",
222
+ "transformer.h.23.ln_2.bias": "pytorch_model-00001-of-00002.bin",
223
+ "transformer.h.23.ln_2.weight": "pytorch_model-00001-of-00002.bin",
224
+ "transformer.h.23.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
225
+ "transformer.h.23.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
226
+ "transformer.h.23.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
227
+ "transformer.h.23.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
228
+ "transformer.h.24.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
229
+ "transformer.h.24.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
230
+ "transformer.h.24.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
231
+ "transformer.h.24.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
232
+ "transformer.h.24.attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
233
+ "transformer.h.24.ln_1.bias": "pytorch_model-00001-of-00002.bin",
234
+ "transformer.h.24.ln_1.weight": "pytorch_model-00001-of-00002.bin",
235
+ "transformer.h.24.ln_2.bias": "pytorch_model-00001-of-00002.bin",
236
+ "transformer.h.24.ln_2.weight": "pytorch_model-00001-of-00002.bin",
237
+ "transformer.h.24.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
238
+ "transformer.h.24.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
239
+ "transformer.h.24.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
240
+ "transformer.h.24.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
241
+ "transformer.h.25.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
242
+ "transformer.h.25.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
243
+ "transformer.h.25.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
244
+ "transformer.h.25.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
245
+ "transformer.h.25.attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
246
+ "transformer.h.25.ln_1.bias": "pytorch_model-00001-of-00002.bin",
247
+ "transformer.h.25.ln_1.weight": "pytorch_model-00001-of-00002.bin",
248
+ "transformer.h.25.ln_2.bias": "pytorch_model-00001-of-00002.bin",
249
+ "transformer.h.25.ln_2.weight": "pytorch_model-00001-of-00002.bin",
250
+ "transformer.h.25.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
251
+ "transformer.h.25.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
252
+ "transformer.h.25.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
253
+ "transformer.h.25.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
254
+ "transformer.h.26.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
255
+ "transformer.h.26.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
256
+ "transformer.h.26.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
257
+ "transformer.h.26.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
258
+ "transformer.h.26.attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
259
+ "transformer.h.26.ln_1.bias": "pytorch_model-00001-of-00002.bin",
260
+ "transformer.h.26.ln_1.weight": "pytorch_model-00001-of-00002.bin",
261
+ "transformer.h.26.ln_2.bias": "pytorch_model-00001-of-00002.bin",
262
+ "transformer.h.26.ln_2.weight": "pytorch_model-00001-of-00002.bin",
263
+ "transformer.h.26.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
264
+ "transformer.h.26.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
265
+ "transformer.h.26.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
266
+ "transformer.h.26.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
267
+ "transformer.h.27.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
268
+ "transformer.h.27.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
269
+ "transformer.h.27.attn.c_proj.bias": "pytorch_model-00002-of-00002.bin",
270
+ "transformer.h.27.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
271
+ "transformer.h.27.attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
272
+ "transformer.h.27.ln_1.bias": "pytorch_model-00002-of-00002.bin",
273
+ "transformer.h.27.ln_1.weight": "pytorch_model-00002-of-00002.bin",
274
+ "transformer.h.27.ln_2.bias": "pytorch_model-00002-of-00002.bin",
275
+ "transformer.h.27.ln_2.weight": "pytorch_model-00002-of-00002.bin",
276
+ "transformer.h.27.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
277
+ "transformer.h.27.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
278
+ "transformer.h.27.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
279
+ "transformer.h.27.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
280
+ "transformer.h.28.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
281
+ "transformer.h.28.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
282
+ "transformer.h.28.attn.c_proj.bias": "pytorch_model-00002-of-00002.bin",
283
+ "transformer.h.28.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
284
+ "transformer.h.28.attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
285
+ "transformer.h.28.ln_1.bias": "pytorch_model-00002-of-00002.bin",
286
+ "transformer.h.28.ln_1.weight": "pytorch_model-00002-of-00002.bin",
287
+ "transformer.h.28.ln_2.bias": "pytorch_model-00002-of-00002.bin",
288
+ "transformer.h.28.ln_2.weight": "pytorch_model-00002-of-00002.bin",
289
+ "transformer.h.28.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
290
+ "transformer.h.28.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
291
+ "transformer.h.28.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
292
+ "transformer.h.28.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
293
+ "transformer.h.29.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
294
+ "transformer.h.29.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
295
+ "transformer.h.29.attn.c_proj.bias": "pytorch_model-00002-of-00002.bin",
296
+ "transformer.h.29.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
297
+ "transformer.h.29.attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
298
+ "transformer.h.29.ln_1.bias": "pytorch_model-00002-of-00002.bin",
299
+ "transformer.h.29.ln_1.weight": "pytorch_model-00002-of-00002.bin",
300
+ "transformer.h.29.ln_2.bias": "pytorch_model-00002-of-00002.bin",
301
+ "transformer.h.29.ln_2.weight": "pytorch_model-00002-of-00002.bin",
302
+ "transformer.h.29.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
303
+ "transformer.h.29.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
304
+ "transformer.h.29.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
305
+ "transformer.h.29.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
306
+ "transformer.h.3.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
307
+ "transformer.h.3.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
308
+ "transformer.h.3.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
309
+ "transformer.h.3.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
310
+ "transformer.h.3.attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
311
+ "transformer.h.3.ln_1.bias": "pytorch_model-00001-of-00002.bin",
312
+ "transformer.h.3.ln_1.weight": "pytorch_model-00001-of-00002.bin",
313
+ "transformer.h.3.ln_2.bias": "pytorch_model-00001-of-00002.bin",
314
+ "transformer.h.3.ln_2.weight": "pytorch_model-00001-of-00002.bin",
315
+ "transformer.h.3.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
316
+ "transformer.h.3.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
317
+ "transformer.h.3.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
318
+ "transformer.h.3.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
319
+ "transformer.h.30.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
320
+ "transformer.h.30.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
321
+ "transformer.h.30.attn.c_proj.bias": "pytorch_model-00002-of-00002.bin",
322
+ "transformer.h.30.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
323
+ "transformer.h.30.attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
324
+ "transformer.h.30.ln_1.bias": "pytorch_model-00002-of-00002.bin",
325
+ "transformer.h.30.ln_1.weight": "pytorch_model-00002-of-00002.bin",
326
+ "transformer.h.30.ln_2.bias": "pytorch_model-00002-of-00002.bin",
327
+ "transformer.h.30.ln_2.weight": "pytorch_model-00002-of-00002.bin",
328
+ "transformer.h.30.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
329
+ "transformer.h.30.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
330
+ "transformer.h.30.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
331
+ "transformer.h.30.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
332
+ "transformer.h.31.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
333
+ "transformer.h.31.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
334
+ "transformer.h.31.attn.c_proj.bias": "pytorch_model-00002-of-00002.bin",
335
+ "transformer.h.31.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
336
+ "transformer.h.31.attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
337
+ "transformer.h.31.ln_1.bias": "pytorch_model-00002-of-00002.bin",
338
+ "transformer.h.31.ln_1.weight": "pytorch_model-00002-of-00002.bin",
339
+ "transformer.h.31.ln_2.bias": "pytorch_model-00002-of-00002.bin",
340
+ "transformer.h.31.ln_2.weight": "pytorch_model-00002-of-00002.bin",
341
+ "transformer.h.31.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
342
+ "transformer.h.31.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
343
+ "transformer.h.31.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
344
+ "transformer.h.31.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
345
+ "transformer.h.32.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
346
+ "transformer.h.32.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
347
+ "transformer.h.32.attn.c_proj.bias": "pytorch_model-00002-of-00002.bin",
348
+ "transformer.h.32.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
349
+ "transformer.h.32.attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
350
+ "transformer.h.32.ln_1.bias": "pytorch_model-00002-of-00002.bin",
351
+ "transformer.h.32.ln_1.weight": "pytorch_model-00002-of-00002.bin",
352
+ "transformer.h.32.ln_2.bias": "pytorch_model-00002-of-00002.bin",
353
+ "transformer.h.32.ln_2.weight": "pytorch_model-00002-of-00002.bin",
354
+ "transformer.h.32.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
355
+ "transformer.h.32.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
356
+ "transformer.h.32.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
357
+ "transformer.h.32.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
358
+ "transformer.h.33.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
359
+ "transformer.h.33.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
360
+ "transformer.h.33.attn.c_proj.bias": "pytorch_model-00002-of-00002.bin",
361
+ "transformer.h.33.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
362
+ "transformer.h.33.attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
363
+ "transformer.h.33.ln_1.bias": "pytorch_model-00002-of-00002.bin",
364
+ "transformer.h.33.ln_1.weight": "pytorch_model-00002-of-00002.bin",
365
+ "transformer.h.33.ln_2.bias": "pytorch_model-00002-of-00002.bin",
366
+ "transformer.h.33.ln_2.weight": "pytorch_model-00002-of-00002.bin",
367
+ "transformer.h.33.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
368
+ "transformer.h.33.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
369
+ "transformer.h.33.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
370
+ "transformer.h.33.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
371
+ "transformer.h.34.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
372
+ "transformer.h.34.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
373
+ "transformer.h.34.attn.c_proj.bias": "pytorch_model-00002-of-00002.bin",
374
+ "transformer.h.34.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
375
+ "transformer.h.34.attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
376
+ "transformer.h.34.ln_1.bias": "pytorch_model-00002-of-00002.bin",
377
+ "transformer.h.34.ln_1.weight": "pytorch_model-00002-of-00002.bin",
378
+ "transformer.h.34.ln_2.bias": "pytorch_model-00002-of-00002.bin",
379
+ "transformer.h.34.ln_2.weight": "pytorch_model-00002-of-00002.bin",
380
+ "transformer.h.34.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
381
+ "transformer.h.34.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
382
+ "transformer.h.34.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
383
+ "transformer.h.34.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
384
+ "transformer.h.35.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
385
+ "transformer.h.35.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
386
+ "transformer.h.35.attn.c_proj.bias": "pytorch_model-00002-of-00002.bin",
387
+ "transformer.h.35.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
388
+ "transformer.h.35.attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
389
+ "transformer.h.35.ln_1.bias": "pytorch_model-00002-of-00002.bin",
390
+ "transformer.h.35.ln_1.weight": "pytorch_model-00002-of-00002.bin",
391
+ "transformer.h.35.ln_2.bias": "pytorch_model-00002-of-00002.bin",
392
+ "transformer.h.35.ln_2.weight": "pytorch_model-00002-of-00002.bin",
393
+ "transformer.h.35.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
394
+ "transformer.h.35.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
395
+ "transformer.h.35.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
396
+ "transformer.h.35.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
397
+ "transformer.h.36.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
398
+ "transformer.h.36.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
399
+ "transformer.h.36.attn.c_proj.bias": "pytorch_model-00002-of-00002.bin",
400
+ "transformer.h.36.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
401
+ "transformer.h.36.attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
402
+ "transformer.h.36.ln_1.bias": "pytorch_model-00002-of-00002.bin",
403
+ "transformer.h.36.ln_1.weight": "pytorch_model-00002-of-00002.bin",
404
+ "transformer.h.36.ln_2.bias": "pytorch_model-00002-of-00002.bin",
405
+ "transformer.h.36.ln_2.weight": "pytorch_model-00002-of-00002.bin",
406
+ "transformer.h.36.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
407
+ "transformer.h.36.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
408
+ "transformer.h.36.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
409
+ "transformer.h.36.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
410
+ "transformer.h.37.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
411
+ "transformer.h.37.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
412
+ "transformer.h.37.attn.c_proj.bias": "pytorch_model-00002-of-00002.bin",
413
+ "transformer.h.37.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
414
+ "transformer.h.37.attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
415
+ "transformer.h.37.ln_1.bias": "pytorch_model-00002-of-00002.bin",
416
+ "transformer.h.37.ln_1.weight": "pytorch_model-00002-of-00002.bin",
417
+ "transformer.h.37.ln_2.bias": "pytorch_model-00002-of-00002.bin",
418
+ "transformer.h.37.ln_2.weight": "pytorch_model-00002-of-00002.bin",
419
+ "transformer.h.37.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
420
+ "transformer.h.37.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
421
+ "transformer.h.37.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
422
+ "transformer.h.37.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
423
+ "transformer.h.38.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
424
+ "transformer.h.38.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
425
+ "transformer.h.38.attn.c_proj.bias": "pytorch_model-00002-of-00002.bin",
426
+ "transformer.h.38.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
427
+ "transformer.h.38.attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
428
+ "transformer.h.38.ln_1.bias": "pytorch_model-00002-of-00002.bin",
429
+ "transformer.h.38.ln_1.weight": "pytorch_model-00002-of-00002.bin",
430
+ "transformer.h.38.ln_2.bias": "pytorch_model-00002-of-00002.bin",
431
+ "transformer.h.38.ln_2.weight": "pytorch_model-00002-of-00002.bin",
432
+ "transformer.h.38.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
433
+ "transformer.h.38.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
434
+ "transformer.h.38.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
435
+ "transformer.h.38.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
436
+ "transformer.h.39.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
437
+ "transformer.h.39.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
438
+ "transformer.h.39.attn.c_proj.bias": "pytorch_model-00002-of-00002.bin",
439
+ "transformer.h.39.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
440
+ "transformer.h.39.attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
441
+ "transformer.h.39.ln_1.bias": "pytorch_model-00002-of-00002.bin",
442
+ "transformer.h.39.ln_1.weight": "pytorch_model-00002-of-00002.bin",
443
+ "transformer.h.39.ln_2.bias": "pytorch_model-00002-of-00002.bin",
444
+ "transformer.h.39.ln_2.weight": "pytorch_model-00002-of-00002.bin",
445
+ "transformer.h.39.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
446
+ "transformer.h.39.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
447
+ "transformer.h.39.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
448
+ "transformer.h.39.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
449
+ "transformer.h.4.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
450
+ "transformer.h.4.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
451
+ "transformer.h.4.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
452
+ "transformer.h.4.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
453
+ "transformer.h.4.attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
454
+ "transformer.h.4.ln_1.bias": "pytorch_model-00001-of-00002.bin",
455
+ "transformer.h.4.ln_1.weight": "pytorch_model-00001-of-00002.bin",
456
+ "transformer.h.4.ln_2.bias": "pytorch_model-00001-of-00002.bin",
457
+ "transformer.h.4.ln_2.weight": "pytorch_model-00001-of-00002.bin",
458
+ "transformer.h.4.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
459
+ "transformer.h.4.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
460
+ "transformer.h.4.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
461
+ "transformer.h.4.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
462
+ "transformer.h.40.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
463
+ "transformer.h.40.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
464
+ "transformer.h.40.attn.c_proj.bias": "pytorch_model-00002-of-00002.bin",
465
+ "transformer.h.40.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
466
+ "transformer.h.40.attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
467
+ "transformer.h.40.ln_1.bias": "pytorch_model-00002-of-00002.bin",
468
+ "transformer.h.40.ln_1.weight": "pytorch_model-00002-of-00002.bin",
469
+ "transformer.h.40.ln_2.bias": "pytorch_model-00002-of-00002.bin",
470
+ "transformer.h.40.ln_2.weight": "pytorch_model-00002-of-00002.bin",
471
+ "transformer.h.40.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
472
+ "transformer.h.40.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
473
+ "transformer.h.40.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
474
+ "transformer.h.40.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
475
+ "transformer.h.41.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
476
+ "transformer.h.41.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
477
+ "transformer.h.41.attn.c_proj.bias": "pytorch_model-00002-of-00002.bin",
478
+ "transformer.h.41.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
479
+ "transformer.h.41.attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
480
+ "transformer.h.41.ln_1.bias": "pytorch_model-00002-of-00002.bin",
481
+ "transformer.h.41.ln_1.weight": "pytorch_model-00002-of-00002.bin",
482
+ "transformer.h.41.ln_2.bias": "pytorch_model-00002-of-00002.bin",
483
+ "transformer.h.41.ln_2.weight": "pytorch_model-00002-of-00002.bin",
484
+ "transformer.h.41.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
485
+ "transformer.h.41.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
486
+ "transformer.h.41.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
487
+ "transformer.h.41.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
488
+ "transformer.h.5.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
489
+ "transformer.h.5.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
490
+ "transformer.h.5.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
491
+ "transformer.h.5.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
492
+ "transformer.h.5.attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
493
+ "transformer.h.5.ln_1.bias": "pytorch_model-00001-of-00002.bin",
494
+ "transformer.h.5.ln_1.weight": "pytorch_model-00001-of-00002.bin",
495
+ "transformer.h.5.ln_2.bias": "pytorch_model-00001-of-00002.bin",
496
+ "transformer.h.5.ln_2.weight": "pytorch_model-00001-of-00002.bin",
497
+ "transformer.h.5.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
498
+ "transformer.h.5.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
499
+ "transformer.h.5.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
500
+ "transformer.h.5.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
501
+ "transformer.h.6.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
502
+ "transformer.h.6.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
503
+ "transformer.h.6.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
504
+ "transformer.h.6.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
505
+ "transformer.h.6.attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
506
+ "transformer.h.6.ln_1.bias": "pytorch_model-00001-of-00002.bin",
507
+ "transformer.h.6.ln_1.weight": "pytorch_model-00001-of-00002.bin",
508
+ "transformer.h.6.ln_2.bias": "pytorch_model-00001-of-00002.bin",
509
+ "transformer.h.6.ln_2.weight": "pytorch_model-00001-of-00002.bin",
510
+ "transformer.h.6.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
511
+ "transformer.h.6.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
512
+ "transformer.h.6.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
513
+ "transformer.h.6.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
514
+ "transformer.h.7.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
515
+ "transformer.h.7.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
516
+ "transformer.h.7.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
517
+ "transformer.h.7.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
518
+ "transformer.h.7.attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
519
+ "transformer.h.7.ln_1.bias": "pytorch_model-00001-of-00002.bin",
520
+ "transformer.h.7.ln_1.weight": "pytorch_model-00001-of-00002.bin",
521
+ "transformer.h.7.ln_2.bias": "pytorch_model-00001-of-00002.bin",
522
+ "transformer.h.7.ln_2.weight": "pytorch_model-00001-of-00002.bin",
523
+ "transformer.h.7.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
524
+ "transformer.h.7.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
525
+ "transformer.h.7.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
526
+ "transformer.h.7.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
527
+ "transformer.h.8.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
528
+ "transformer.h.8.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
529
+ "transformer.h.8.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
530
+ "transformer.h.8.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
531
+ "transformer.h.8.attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
532
+ "transformer.h.8.ln_1.bias": "pytorch_model-00001-of-00002.bin",
533
+ "transformer.h.8.ln_1.weight": "pytorch_model-00001-of-00002.bin",
534
+ "transformer.h.8.ln_2.bias": "pytorch_model-00001-of-00002.bin",
535
+ "transformer.h.8.ln_2.weight": "pytorch_model-00001-of-00002.bin",
536
+ "transformer.h.8.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
537
+ "transformer.h.8.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
538
+ "transformer.h.8.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
539
+ "transformer.h.8.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
540
+ "transformer.h.9.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
541
+ "transformer.h.9.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
542
+ "transformer.h.9.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
543
+ "transformer.h.9.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
544
+ "transformer.h.9.attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
545
+ "transformer.h.9.ln_1.bias": "pytorch_model-00001-of-00002.bin",
546
+ "transformer.h.9.ln_1.weight": "pytorch_model-00001-of-00002.bin",
547
+ "transformer.h.9.ln_2.bias": "pytorch_model-00001-of-00002.bin",
548
+ "transformer.h.9.ln_2.weight": "pytorch_model-00001-of-00002.bin",
549
+ "transformer.h.9.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
550
+ "transformer.h.9.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
551
+ "transformer.h.9.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
552
+ "transformer.h.9.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
553
+ "transformer.ln_f.bias": "pytorch_model-00002-of-00002.bin",
554
+ "transformer.ln_f.weight": "pytorch_model-00002-of-00002.bin",
555
+ "transformer.wte.weight": "pytorch_model-00001-of-00002.bin"
556
+ }
557
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|endoftext|>",
4
+ "<fim_prefix>",
5
+ "<fim_middle>",
6
+ "<fim_suffix>",
7
+ "<fim_pad>",
8
+ "<filename>",
9
+ "<gh_stars>",
10
+ "<issue_start>",
11
+ "<issue_comment>",
12
+ "<issue_closed>",
13
+ "<jupyter_start>",
14
+ "<jupyter_text>",
15
+ "<jupyter_code>",
16
+ "<jupyter_output>",
17
+ "<empty_output>",
18
+ "<commit_before>",
19
+ "<commit_msg>",
20
+ "<commit_after>",
21
+ "<reponame>"
22
+ ],
23
+ "bos_token": "<|endoftext|>",
24
+ "eos_token": "<|endoftext|>",
25
+ "pad_token": "<|endoftext|>",
26
+ "unk_token": "<|endoftext|>"
27
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "additional_special_tokens": [
4
+ "<|endoftext|>",
5
+ "<fim_prefix>",
6
+ "<fim_middle>",
7
+ "<fim_suffix>",
8
+ "<fim_pad>",
9
+ "<filename>",
10
+ "<gh_stars>",
11
+ "<issue_start>",
12
+ "<issue_comment>",
13
+ "<issue_closed>",
14
+ "<jupyter_start>",
15
+ "<jupyter_text>",
16
+ "<jupyter_code>",
17
+ "<jupyter_output>",
18
+ "<empty_output>",
19
+ "<commit_before>",
20
+ "<commit_msg>",
21
+ "<commit_after>",
22
+ "<reponame>"
23
+ ],
24
+ "bos_token": "<|endoftext|>",
25
+ "clean_up_tokenization_spaces": true,
26
+ "eos_token": "<|endoftext|>",
27
+ "model_max_length": 8192,
28
+ "pad_token": "<|endoftext|>",
29
+ "tokenizer_class": "GPT2Tokenizer",
30
+ "unk_token": "<|endoftext|>",
31
+ "vocab_size": 70019
32
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff