zhuohaoyu commited on
Commit
980c40c
Β·
verified Β·
1 Parent(s): 6b55d1c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -18
README.md CHANGED
@@ -9,26 +9,19 @@ pipeline_tag: text-generation
9
  base_model: Qwen/Qwen1.5-7B-Chat
10
  # (Assuming Qwen1.5-7B-Chat is the closest equivalent, as qwen3-8b is not a standard HF model name. Please adjust if a more precise base_model identifier is available)
11
  ---
12
-
13
- # RewardAnything: Generalizable Principle-Following Reward Models (8B-v1)
14
-
15
  <div align="center">
16
  <picture>
17
- <source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/ZhuohaoYu/RewardAnything/main/assets/rewardanything-logo-horizontal-dark-mode.png">
18
- <source media="(prefers-color-scheme: light)" srcset="https://raw.githubusercontent.com/ZhuohaoYu/RewardAnything/main/assets/rewardanything-logo-horizontal.png">
19
- <img alt="RewardAnything" src="https://raw.githubusercontent.com/ZhuohaoYu/RewardAnything/main/assets/rewardanything-logo-horizontal.png" width="400">
20
  </picture>
21
- <br/>
22
  <p>
23
  <a href="https://zhuohaoyu.github.io/RewardAnything"><img alt="Website" src="https://img.shields.io/badge/🌐_Project-Website-A593C2?style=flat-square&labelColor=8A7AA8"></a>
24
- <a href="https://huggingface.co/zhuohaoyu/RewardAnything-8B-v1"><img alt="Model Weights" src="https://img.shields.io/badge/πŸ€—_HuggingFace-Model_Weights-D4A574?style=flat-square&labelColor=B8956A"></a>
25
  <a href="https://arxiv.org/abs/XXXX.XXXXX"><img alt="Paper" src="https://img.shields.io/badge/πŸ“„_arXiv-Paper-C7969C?style=flat-square&labelColor=A8798A"></a>
26
  <a href="https://pypi.org/project/rewardanything/"><img alt="PyPI" src="https://img.shields.io/pypi/v/rewardanything.svg?style=flat-square&color=7B9BB3&labelColor=5A7A94"></a>
27
  </p>
28
- <br/>
29
-
30
- # RewardAnything: Generalizable Principle-Following Reward Models
31
-
32
  <a>Zhuohao Yu<sup>1,Β§</sup></a>&emsp;
33
  <a>Jiali Zeng<sup>2</sup></a>&emsp;
34
  <a>Weizheng Gu<sup>1</sup></a>&emsp;
@@ -40,7 +33,6 @@ base_model: Qwen/Qwen1.5-7B-Chat
40
  <a>Shikun Zhang<sup>1</sup></a>&emsp;
41
  <a>Wei Ye<sup>1,†</sup></a>
42
  <div>
43
- <br/>
44
  <p>
45
  <sup>1</sup>Peking University&emsp;
46
  <sup>2</sup>WeChat AI&emsp;
@@ -87,7 +79,7 @@ import rewardanything
87
 
88
  # Load model locally (similar to HuggingFace)
89
  reward_model = rewardanything.from_pretrained(
90
- "zhuohaoyu/RewardAnything-8B-v1", # Model path/name
91
  device="cuda", # Device placement
92
  torch_dtype="auto" # Automatic dtype selection
93
  )
@@ -131,7 +123,7 @@ First, install and start a vLLM server. See the [vLLM quickstart guide](https://
131
  pip install vllm
132
 
133
  # Start vLLM server with RewardAnything model
134
- vllm serve zhuohaoyu/RewardAnything-8B-v1 \
135
  --host 0.0.0.0 \
136
  --port 8000 \
137
  --max-model-len 8192 \
@@ -145,7 +137,7 @@ Create a config file `config.json`:
145
  ```json
146
  {
147
  "api_key": ["dummy-key-for-vllm"],
148
- "api_model": "zhuohaoyu/RewardAnything-8B-v1",
149
  "api_base": ["http://localhost:8000/v1"],
150
  "api_timeout": 120.0,
151
  "generation_config": {
@@ -205,11 +197,11 @@ from rewardanything.processing import prepare_chat_messages, parse_rewardanythin
205
 
206
  # Load model and tokenizer directly
207
  model = AutoModelForCausalLM.from_pretrained(
208
- "zhuohaoyu/RewardAnything-8B-v1",
209
  torch_dtype="auto",
210
  device_map="auto"
211
  )
212
- tokenizer = AutoTokenizer.from_pretrained("zhuohaoyu/RewardAnything-8B-v1")
213
 
214
  # Prepare evaluation data
215
  principle = "Judge responses based on helpfulness and accuracy"
 
9
  base_model: Qwen/Qwen1.5-7B-Chat
10
  # (Assuming Qwen1.5-7B-Chat is the closest equivalent, as qwen3-8b is not a standard HF model name. Please adjust if a more precise base_model identifier is available)
11
  ---
 
 
 
12
  <div align="center">
13
  <picture>
14
+ <source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/zhuohaoyu/RewardAnything/main/assets/rewardanything-logo-horizontal-dark-mode.png">
15
+ <source media="(prefers-color-scheme: light)" srcset="https://raw.githubusercontent.com/zhuohaoyu/RewardAnything/main/assets/rewardanything-logo-horizontal.png">
16
+ <img alt="RewardAnything" src="https://raw.githubusercontent.com/zhuohaoyu/RewardAnything/main/assets/rewardanything-logo-horizontal.png" width="400">
17
  </picture>
 
18
  <p>
19
  <a href="https://zhuohaoyu.github.io/RewardAnything"><img alt="Website" src="https://img.shields.io/badge/🌐_Project-Website-A593C2?style=flat-square&labelColor=8A7AA8"></a>
20
+ <a href="https://huggingface.co/WisdomShell/RewardAnything-8B-v1"><img alt="Model Weights" src="https://img.shields.io/badge/πŸ€—_HuggingFace-Model_Weights-D4A574?style=flat-square&labelColor=B8956A"></a>
21
  <a href="https://arxiv.org/abs/XXXX.XXXXX"><img alt="Paper" src="https://img.shields.io/badge/πŸ“„_arXiv-Paper-C7969C?style=flat-square&labelColor=A8798A"></a>
22
  <a href="https://pypi.org/project/rewardanything/"><img alt="PyPI" src="https://img.shields.io/pypi/v/rewardanything.svg?style=flat-square&color=7B9BB3&labelColor=5A7A94"></a>
23
  </p>
24
+ <h1> RewardAnything: Generalizable Principle-Following Reward Models </h1>
 
 
 
25
  <a>Zhuohao Yu<sup>1,Β§</sup></a>&emsp;
26
  <a>Jiali Zeng<sup>2</sup></a>&emsp;
27
  <a>Weizheng Gu<sup>1</sup></a>&emsp;
 
33
  <a>Shikun Zhang<sup>1</sup></a>&emsp;
34
  <a>Wei Ye<sup>1,†</sup></a>
35
  <div>
 
36
  <p>
37
  <sup>1</sup>Peking University&emsp;
38
  <sup>2</sup>WeChat AI&emsp;
 
79
 
80
  # Load model locally (similar to HuggingFace)
81
  reward_model = rewardanything.from_pretrained(
82
+ "WisdomShell/RewardAnything-8B-v1", # Model path/name
83
  device="cuda", # Device placement
84
  torch_dtype="auto" # Automatic dtype selection
85
  )
 
123
  pip install vllm
124
 
125
  # Start vLLM server with RewardAnything model
126
+ vllm serve WisdomShell/RewardAnything-8B-v1 \
127
  --host 0.0.0.0 \
128
  --port 8000 \
129
  --max-model-len 8192 \
 
137
  ```json
138
  {
139
  "api_key": ["dummy-key-for-vllm"],
140
+ "api_model": "WisdomShell/RewardAnything-8B-v1",
141
  "api_base": ["http://localhost:8000/v1"],
142
  "api_timeout": 120.0,
143
  "generation_config": {
 
197
 
198
  # Load model and tokenizer directly
199
  model = AutoModelForCausalLM.from_pretrained(
200
+ "WisdomShell/RewardAnything-8B-v1",
201
  torch_dtype="auto",
202
  device_map="auto"
203
  )
204
+ tokenizer = AutoTokenizer.from_pretrained("WisdomShell/RewardAnything-8B-v1")
205
 
206
  # Prepare evaluation data
207
  principle = "Judge responses based on helpfulness and accuracy"