Update README.md
Browse files
README.md
CHANGED
@@ -9,26 +9,19 @@ pipeline_tag: text-generation
|
|
9 |
base_model: Qwen/Qwen1.5-7B-Chat
|
10 |
# (Assuming Qwen1.5-7B-Chat is the closest equivalent, as qwen3-8b is not a standard HF model name. Please adjust if a more precise base_model identifier is available)
|
11 |
---
|
12 |
-
|
13 |
-
# RewardAnything: Generalizable Principle-Following Reward Models (8B-v1)
|
14 |
-
|
15 |
<div align="center">
|
16 |
<picture>
|
17 |
-
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/
|
18 |
-
<source media="(prefers-color-scheme: light)" srcset="https://raw.githubusercontent.com/
|
19 |
-
<img alt="RewardAnything" src="https://raw.githubusercontent.com/
|
20 |
</picture>
|
21 |
-
<br/>
|
22 |
<p>
|
23 |
<a href="https://zhuohaoyu.github.io/RewardAnything"><img alt="Website" src="https://img.shields.io/badge/π_Project-Website-A593C2?style=flat-square&labelColor=8A7AA8"></a>
|
24 |
-
<a href="https://huggingface.co/
|
25 |
<a href="https://arxiv.org/abs/XXXX.XXXXX"><img alt="Paper" src="https://img.shields.io/badge/π_arXiv-Paper-C7969C?style=flat-square&labelColor=A8798A"></a>
|
26 |
<a href="https://pypi.org/project/rewardanything/"><img alt="PyPI" src="https://img.shields.io/pypi/v/rewardanything.svg?style=flat-square&color=7B9BB3&labelColor=5A7A94"></a>
|
27 |
</p>
|
28 |
-
<
|
29 |
-
|
30 |
-
# RewardAnything: Generalizable Principle-Following Reward Models
|
31 |
-
|
32 |
<a>Zhuohao Yu<sup>1,Β§</sup></a> 
|
33 |
<a>Jiali Zeng<sup>2</sup></a> 
|
34 |
<a>Weizheng Gu<sup>1</sup></a> 
|
@@ -40,7 +33,6 @@ base_model: Qwen/Qwen1.5-7B-Chat
|
|
40 |
<a>Shikun Zhang<sup>1</sup></a> 
|
41 |
<a>Wei Ye<sup>1,β </sup></a>
|
42 |
<div>
|
43 |
-
<br/>
|
44 |
<p>
|
45 |
<sup>1</sup>Peking University 
|
46 |
<sup>2</sup>WeChat AI 
|
@@ -87,7 +79,7 @@ import rewardanything
|
|
87 |
|
88 |
# Load model locally (similar to HuggingFace)
|
89 |
reward_model = rewardanything.from_pretrained(
|
90 |
-
"
|
91 |
device="cuda", # Device placement
|
92 |
torch_dtype="auto" # Automatic dtype selection
|
93 |
)
|
@@ -131,7 +123,7 @@ First, install and start a vLLM server. See the [vLLM quickstart guide](https://
|
|
131 |
pip install vllm
|
132 |
|
133 |
# Start vLLM server with RewardAnything model
|
134 |
-
vllm serve
|
135 |
--host 0.0.0.0 \
|
136 |
--port 8000 \
|
137 |
--max-model-len 8192 \
|
@@ -145,7 +137,7 @@ Create a config file `config.json`:
|
|
145 |
```json
|
146 |
{
|
147 |
"api_key": ["dummy-key-for-vllm"],
|
148 |
-
"api_model": "
|
149 |
"api_base": ["http://localhost:8000/v1"],
|
150 |
"api_timeout": 120.0,
|
151 |
"generation_config": {
|
@@ -205,11 +197,11 @@ from rewardanything.processing import prepare_chat_messages, parse_rewardanythin
|
|
205 |
|
206 |
# Load model and tokenizer directly
|
207 |
model = AutoModelForCausalLM.from_pretrained(
|
208 |
-
"
|
209 |
torch_dtype="auto",
|
210 |
device_map="auto"
|
211 |
)
|
212 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
213 |
|
214 |
# Prepare evaluation data
|
215 |
principle = "Judge responses based on helpfulness and accuracy"
|
|
|
9 |
base_model: Qwen/Qwen1.5-7B-Chat
|
10 |
# (Assuming Qwen1.5-7B-Chat is the closest equivalent, as qwen3-8b is not a standard HF model name. Please adjust if a more precise base_model identifier is available)
|
11 |
---
|
|
|
|
|
|
|
12 |
<div align="center">
|
13 |
<picture>
|
14 |
+
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/zhuohaoyu/RewardAnything/main/assets/rewardanything-logo-horizontal-dark-mode.png">
|
15 |
+
<source media="(prefers-color-scheme: light)" srcset="https://raw.githubusercontent.com/zhuohaoyu/RewardAnything/main/assets/rewardanything-logo-horizontal.png">
|
16 |
+
<img alt="RewardAnything" src="https://raw.githubusercontent.com/zhuohaoyu/RewardAnything/main/assets/rewardanything-logo-horizontal.png" width="400">
|
17 |
</picture>
|
|
|
18 |
<p>
|
19 |
<a href="https://zhuohaoyu.github.io/RewardAnything"><img alt="Website" src="https://img.shields.io/badge/π_Project-Website-A593C2?style=flat-square&labelColor=8A7AA8"></a>
|
20 |
+
<a href="https://huggingface.co/WisdomShell/RewardAnything-8B-v1"><img alt="Model Weights" src="https://img.shields.io/badge/π€_HuggingFace-Model_Weights-D4A574?style=flat-square&labelColor=B8956A"></a>
|
21 |
<a href="https://arxiv.org/abs/XXXX.XXXXX"><img alt="Paper" src="https://img.shields.io/badge/π_arXiv-Paper-C7969C?style=flat-square&labelColor=A8798A"></a>
|
22 |
<a href="https://pypi.org/project/rewardanything/"><img alt="PyPI" src="https://img.shields.io/pypi/v/rewardanything.svg?style=flat-square&color=7B9BB3&labelColor=5A7A94"></a>
|
23 |
</p>
|
24 |
+
<h1> RewardAnything: Generalizable Principle-Following Reward Models </h1>
|
|
|
|
|
|
|
25 |
<a>Zhuohao Yu<sup>1,Β§</sup></a> 
|
26 |
<a>Jiali Zeng<sup>2</sup></a> 
|
27 |
<a>Weizheng Gu<sup>1</sup></a> 
|
|
|
33 |
<a>Shikun Zhang<sup>1</sup></a> 
|
34 |
<a>Wei Ye<sup>1,β </sup></a>
|
35 |
<div>
|
|
|
36 |
<p>
|
37 |
<sup>1</sup>Peking University 
|
38 |
<sup>2</sup>WeChat AI 
|
|
|
79 |
|
80 |
# Load model locally (similar to HuggingFace)
|
81 |
reward_model = rewardanything.from_pretrained(
|
82 |
+
"WisdomShell/RewardAnything-8B-v1", # Model path/name
|
83 |
device="cuda", # Device placement
|
84 |
torch_dtype="auto" # Automatic dtype selection
|
85 |
)
|
|
|
123 |
pip install vllm
|
124 |
|
125 |
# Start vLLM server with RewardAnything model
|
126 |
+
vllm serve WisdomShell/RewardAnything-8B-v1 \
|
127 |
--host 0.0.0.0 \
|
128 |
--port 8000 \
|
129 |
--max-model-len 8192 \
|
|
|
137 |
```json
|
138 |
{
|
139 |
"api_key": ["dummy-key-for-vllm"],
|
140 |
+
"api_model": "WisdomShell/RewardAnything-8B-v1",
|
141 |
"api_base": ["http://localhost:8000/v1"],
|
142 |
"api_timeout": 120.0,
|
143 |
"generation_config": {
|
|
|
197 |
|
198 |
# Load model and tokenizer directly
|
199 |
model = AutoModelForCausalLM.from_pretrained(
|
200 |
+
"WisdomShell/RewardAnything-8B-v1",
|
201 |
torch_dtype="auto",
|
202 |
device_map="auto"
|
203 |
)
|
204 |
+
tokenizer = AutoTokenizer.from_pretrained("WisdomShell/RewardAnything-8B-v1")
|
205 |
|
206 |
# Prepare evaluation data
|
207 |
principle = "Judge responses based on helpfulness and accuracy"
|