Wizounovziki commited on
Commit
8edc975
·
1 Parent(s): 4606d3e

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -0
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - rouge
7
+ model-index:
8
+ - name: t5-small-devices-sum-ver2
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # t5-small-devices-sum-ver2
16
+
17
+ This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.3679
20
+ - Rouge1: 90.6465
21
+ - Rouge2: 65.2833
22
+ - Rougel: 90.6707
23
+ - Rougelsum: 90.7313
24
+ - Gen Len: 4.4702
25
+
26
+ ## Model description
27
+
28
+ More information needed
29
+
30
+ ## Intended uses & limitations
31
+
32
+ More information needed
33
+
34
+ ## Training and evaluation data
35
+
36
+ More information needed
37
+
38
+ ## Training procedure
39
+
40
+ ### Training hyperparameters
41
+
42
+ The following hyperparameters were used during training:
43
+ - learning_rate: 2e-05
44
+ - train_batch_size: 16
45
+ - eval_batch_size: 16
46
+ - seed: 42
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: linear
49
+ - num_epochs: 10
50
+ - mixed_precision_training: Native AMP
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
55
+ |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
56
+ | No log | 1.0 | 91 | 1.0957 | 58.9566 | 33.4113 | 58.8004 | 58.8863 | 4.8308 |
57
+ | No log | 2.0 | 182 | 0.7017 | 78.9566 | 49.9716 | 78.9338 | 78.9643 | 4.3329 |
58
+ | No log | 3.0 | 273 | 0.5386 | 84.8786 | 56.9622 | 84.8204 | 84.9117 | 4.4577 |
59
+ | No log | 4.0 | 364 | 0.4693 | 87.9792 | 61.0779 | 87.8795 | 88.0098 | 4.4383 |
60
+ | No log | 5.0 | 455 | 0.4273 | 89.4667 | 63.1994 | 89.4169 | 89.5197 | 4.4743 |
61
+ | 1.0586 | 6.0 | 546 | 0.4002 | 89.6456 | 63.5041 | 89.6062 | 89.7042 | 4.4452 |
62
+ | 1.0586 | 7.0 | 637 | 0.3848 | 89.9993 | 64.2505 | 89.9775 | 90.0651 | 4.423 |
63
+ | 1.0586 | 8.0 | 728 | 0.3752 | 90.4249 | 64.819 | 90.4434 | 90.5111 | 4.4799 |
64
+ | 1.0586 | 9.0 | 819 | 0.3703 | 90.4689 | 65.0086 | 90.4954 | 90.5632 | 4.4632 |
65
+ | 1.0586 | 10.0 | 910 | 0.3679 | 90.6465 | 65.2833 | 90.6707 | 90.7313 | 4.4702 |
66
+
67
+
68
+ ### Framework versions
69
+
70
+ - Transformers 4.18.0
71
+ - Pytorch 1.10.0+cu111
72
+ - Datasets 2.0.0
73
+ - Tokenizers 0.11.6