Woleek commited on
Commit
c780e6e
1 Parent(s): 0c61fc4

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -9
README.md CHANGED
@@ -22,7 +22,7 @@ model-index:
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 0.9444444444444444
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
32
 
33
  This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 0.2924
36
- - Accuracy: 0.9444
37
 
38
  ## Model description
39
 
@@ -64,12 +64,11 @@ The following hyperparameters were used during training:
64
 
65
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
66
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
67
- | 0.0169 | 3.33 | 50 | 0.5320 | 0.8056 |
68
- | 0.0008 | 6.67 | 100 | 0.3485 | 0.9167 |
69
- | 0.0004 | 10.0 | 150 | 0.2989 | 0.9444 |
70
- | 0.0004 | 13.33 | 200 | 0.2939 | 0.9444 |
71
- | 0.0003 | 16.67 | 250 | 0.2929 | 0.9444 |
72
- | 0.0003 | 20.0 | 300 | 0.2924 | 0.9444 |
73
 
74
 
75
  ### Framework versions
 
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
+ value: 0.8181818181818182
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 0.6744
36
+ - Accuracy: 0.8182
37
 
38
  ## Model description
39
 
 
64
 
65
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
66
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
67
+ | 0.0099 | 3.57 | 50 | 0.6155 | 0.8182 |
68
+ | 0.0007 | 7.14 | 100 | 0.7441 | 0.7576 |
69
+ | 0.0004 | 10.71 | 150 | 0.6925 | 0.8182 |
70
+ | 0.0003 | 14.29 | 200 | 0.6793 | 0.8182 |
71
+ | 0.0003 | 17.86 | 250 | 0.6744 | 0.8182 |
 
72
 
73
 
74
  ### Framework versions