AlexBefest commited on
Commit
97e6dcf
·
verified ·
1 Parent(s): 3bedb12

Upload 12 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ lora-test.gguf filter=lfs diff=lfs merge=lfs -text
37
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,202 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: unsloth_Mistral-Small-24B-Instruct-2501-unsloth-bnb-4bit
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "unsloth_Mistral-Small-24B-Instruct-2501-unsloth-bnb-4bit",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 16,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "k_proj",
27
+ "gate_proj",
28
+ "v_proj",
29
+ "down_proj",
30
+ "up_proj",
31
+ "q_proj",
32
+ "o_proj"
33
+ ],
34
+ "task_type": "CAUSAL_LM",
35
+ "use_dora": false,
36
+ "use_rslora": false
37
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a81ac337c16145fe7c8504cde3878c83e5b8bb9b310c869e50e95cb6075441c4
3
+ size 369698576
lora-test.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93ed11c2d9a4cd822f5330fb3eb84e6b56bf87a79d8a8051a52ac88becbc4cdd
3
+ size 372509056
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ede04ec5ffb58bcf2b5ff96c975e1f4fcb82aa5d5b415ba9bb3b1779f10c71b
3
+ size 188357716
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:608fccb6c056ce88cdfd5355e6be2046f4d107a24a87c6b0d2c3b200ce6bb4ea
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:efdc8aac57fcc86cfdc63b0f8147f62cb7df0867dd991c08495c175e6a801da6
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,1032 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<unk>",
4
+ "<s>",
5
+ "</s>",
6
+ "[INST]",
7
+ "[/INST]",
8
+ "[AVAILABLE_TOOLS]",
9
+ "[/AVAILABLE_TOOLS]",
10
+ "[TOOL_RESULTS]",
11
+ "[/TOOL_RESULTS]",
12
+ "[TOOL_CALLS]",
13
+ "[IMG]",
14
+ "<pad>",
15
+ "[IMG_BREAK]",
16
+ "[IMG_END]",
17
+ "[PREFIX]",
18
+ "[MIDDLE]",
19
+ "[SUFFIX]",
20
+ "[SYSTEM_PROMPT]",
21
+ "[/SYSTEM_PROMPT]",
22
+ "[TOOL_CONTENT]",
23
+ "<SPECIAL_20>",
24
+ "<SPECIAL_21>",
25
+ "<SPECIAL_22>",
26
+ "<SPECIAL_23>",
27
+ "<SPECIAL_24>",
28
+ "<SPECIAL_25>",
29
+ "<SPECIAL_26>",
30
+ "<SPECIAL_27>",
31
+ "<SPECIAL_28>",
32
+ "<SPECIAL_29>",
33
+ "<SPECIAL_30>",
34
+ "<SPECIAL_31>",
35
+ "<SPECIAL_32>",
36
+ "<SPECIAL_33>",
37
+ "<SPECIAL_34>",
38
+ "<SPECIAL_35>",
39
+ "<SPECIAL_36>",
40
+ "<SPECIAL_37>",
41
+ "<SPECIAL_38>",
42
+ "<SPECIAL_39>",
43
+ "<SPECIAL_40>",
44
+ "<SPECIAL_41>",
45
+ "<SPECIAL_42>",
46
+ "<SPECIAL_43>",
47
+ "<SPECIAL_44>",
48
+ "<SPECIAL_45>",
49
+ "<SPECIAL_46>",
50
+ "<SPECIAL_47>",
51
+ "<SPECIAL_48>",
52
+ "<SPECIAL_49>",
53
+ "<SPECIAL_50>",
54
+ "<SPECIAL_51>",
55
+ "<SPECIAL_52>",
56
+ "<SPECIAL_53>",
57
+ "<SPECIAL_54>",
58
+ "<SPECIAL_55>",
59
+ "<SPECIAL_56>",
60
+ "<SPECIAL_57>",
61
+ "<SPECIAL_58>",
62
+ "<SPECIAL_59>",
63
+ "<SPECIAL_60>",
64
+ "<SPECIAL_61>",
65
+ "<SPECIAL_62>",
66
+ "<SPECIAL_63>",
67
+ "<SPECIAL_64>",
68
+ "<SPECIAL_65>",
69
+ "<SPECIAL_66>",
70
+ "<SPECIAL_67>",
71
+ "<SPECIAL_68>",
72
+ "<SPECIAL_69>",
73
+ "<SPECIAL_70>",
74
+ "<SPECIAL_71>",
75
+ "<SPECIAL_72>",
76
+ "<SPECIAL_73>",
77
+ "<SPECIAL_74>",
78
+ "<SPECIAL_75>",
79
+ "<SPECIAL_76>",
80
+ "<SPECIAL_77>",
81
+ "<SPECIAL_78>",
82
+ "<SPECIAL_79>",
83
+ "<SPECIAL_80>",
84
+ "<SPECIAL_81>",
85
+ "<SPECIAL_82>",
86
+ "<SPECIAL_83>",
87
+ "<SPECIAL_84>",
88
+ "<SPECIAL_85>",
89
+ "<SPECIAL_86>",
90
+ "<SPECIAL_87>",
91
+ "<SPECIAL_88>",
92
+ "<SPECIAL_89>",
93
+ "<SPECIAL_90>",
94
+ "<SPECIAL_91>",
95
+ "<SPECIAL_92>",
96
+ "<SPECIAL_93>",
97
+ "<SPECIAL_94>",
98
+ "<SPECIAL_95>",
99
+ "<SPECIAL_96>",
100
+ "<SPECIAL_97>",
101
+ "<SPECIAL_98>",
102
+ "<SPECIAL_99>",
103
+ "<SPECIAL_100>",
104
+ "<SPECIAL_101>",
105
+ "<SPECIAL_102>",
106
+ "<SPECIAL_103>",
107
+ "<SPECIAL_104>",
108
+ "<SPECIAL_105>",
109
+ "<SPECIAL_106>",
110
+ "<SPECIAL_107>",
111
+ "<SPECIAL_108>",
112
+ "<SPECIAL_109>",
113
+ "<SPECIAL_110>",
114
+ "<SPECIAL_111>",
115
+ "<SPECIAL_112>",
116
+ "<SPECIAL_113>",
117
+ "<SPECIAL_114>",
118
+ "<SPECIAL_115>",
119
+ "<SPECIAL_116>",
120
+ "<SPECIAL_117>",
121
+ "<SPECIAL_118>",
122
+ "<SPECIAL_119>",
123
+ "<SPECIAL_120>",
124
+ "<SPECIAL_121>",
125
+ "<SPECIAL_122>",
126
+ "<SPECIAL_123>",
127
+ "<SPECIAL_124>",
128
+ "<SPECIAL_125>",
129
+ "<SPECIAL_126>",
130
+ "<SPECIAL_127>",
131
+ "<SPECIAL_128>",
132
+ "<SPECIAL_129>",
133
+ "<SPECIAL_130>",
134
+ "<SPECIAL_131>",
135
+ "<SPECIAL_132>",
136
+ "<SPECIAL_133>",
137
+ "<SPECIAL_134>",
138
+ "<SPECIAL_135>",
139
+ "<SPECIAL_136>",
140
+ "<SPECIAL_137>",
141
+ "<SPECIAL_138>",
142
+ "<SPECIAL_139>",
143
+ "<SPECIAL_140>",
144
+ "<SPECIAL_141>",
145
+ "<SPECIAL_142>",
146
+ "<SPECIAL_143>",
147
+ "<SPECIAL_144>",
148
+ "<SPECIAL_145>",
149
+ "<SPECIAL_146>",
150
+ "<SPECIAL_147>",
151
+ "<SPECIAL_148>",
152
+ "<SPECIAL_149>",
153
+ "<SPECIAL_150>",
154
+ "<SPECIAL_151>",
155
+ "<SPECIAL_152>",
156
+ "<SPECIAL_153>",
157
+ "<SPECIAL_154>",
158
+ "<SPECIAL_155>",
159
+ "<SPECIAL_156>",
160
+ "<SPECIAL_157>",
161
+ "<SPECIAL_158>",
162
+ "<SPECIAL_159>",
163
+ "<SPECIAL_160>",
164
+ "<SPECIAL_161>",
165
+ "<SPECIAL_162>",
166
+ "<SPECIAL_163>",
167
+ "<SPECIAL_164>",
168
+ "<SPECIAL_165>",
169
+ "<SPECIAL_166>",
170
+ "<SPECIAL_167>",
171
+ "<SPECIAL_168>",
172
+ "<SPECIAL_169>",
173
+ "<SPECIAL_170>",
174
+ "<SPECIAL_171>",
175
+ "<SPECIAL_172>",
176
+ "<SPECIAL_173>",
177
+ "<SPECIAL_174>",
178
+ "<SPECIAL_175>",
179
+ "<SPECIAL_176>",
180
+ "<SPECIAL_177>",
181
+ "<SPECIAL_178>",
182
+ "<SPECIAL_179>",
183
+ "<SPECIAL_180>",
184
+ "<SPECIAL_181>",
185
+ "<SPECIAL_182>",
186
+ "<SPECIAL_183>",
187
+ "<SPECIAL_184>",
188
+ "<SPECIAL_185>",
189
+ "<SPECIAL_186>",
190
+ "<SPECIAL_187>",
191
+ "<SPECIAL_188>",
192
+ "<SPECIAL_189>",
193
+ "<SPECIAL_190>",
194
+ "<SPECIAL_191>",
195
+ "<SPECIAL_192>",
196
+ "<SPECIAL_193>",
197
+ "<SPECIAL_194>",
198
+ "<SPECIAL_195>",
199
+ "<SPECIAL_196>",
200
+ "<SPECIAL_197>",
201
+ "<SPECIAL_198>",
202
+ "<SPECIAL_199>",
203
+ "<SPECIAL_200>",
204
+ "<SPECIAL_201>",
205
+ "<SPECIAL_202>",
206
+ "<SPECIAL_203>",
207
+ "<SPECIAL_204>",
208
+ "<SPECIAL_205>",
209
+ "<SPECIAL_206>",
210
+ "<SPECIAL_207>",
211
+ "<SPECIAL_208>",
212
+ "<SPECIAL_209>",
213
+ "<SPECIAL_210>",
214
+ "<SPECIAL_211>",
215
+ "<SPECIAL_212>",
216
+ "<SPECIAL_213>",
217
+ "<SPECIAL_214>",
218
+ "<SPECIAL_215>",
219
+ "<SPECIAL_216>",
220
+ "<SPECIAL_217>",
221
+ "<SPECIAL_218>",
222
+ "<SPECIAL_219>",
223
+ "<SPECIAL_220>",
224
+ "<SPECIAL_221>",
225
+ "<SPECIAL_222>",
226
+ "<SPECIAL_223>",
227
+ "<SPECIAL_224>",
228
+ "<SPECIAL_225>",
229
+ "<SPECIAL_226>",
230
+ "<SPECIAL_227>",
231
+ "<SPECIAL_228>",
232
+ "<SPECIAL_229>",
233
+ "<SPECIAL_230>",
234
+ "<SPECIAL_231>",
235
+ "<SPECIAL_232>",
236
+ "<SPECIAL_233>",
237
+ "<SPECIAL_234>",
238
+ "<SPECIAL_235>",
239
+ "<SPECIAL_236>",
240
+ "<SPECIAL_237>",
241
+ "<SPECIAL_238>",
242
+ "<SPECIAL_239>",
243
+ "<SPECIAL_240>",
244
+ "<SPECIAL_241>",
245
+ "<SPECIAL_242>",
246
+ "<SPECIAL_243>",
247
+ "<SPECIAL_244>",
248
+ "<SPECIAL_245>",
249
+ "<SPECIAL_246>",
250
+ "<SPECIAL_247>",
251
+ "<SPECIAL_248>",
252
+ "<SPECIAL_249>",
253
+ "<SPECIAL_250>",
254
+ "<SPECIAL_251>",
255
+ "<SPECIAL_252>",
256
+ "<SPECIAL_253>",
257
+ "<SPECIAL_254>",
258
+ "<SPECIAL_255>",
259
+ "<SPECIAL_256>",
260
+ "<SPECIAL_257>",
261
+ "<SPECIAL_258>",
262
+ "<SPECIAL_259>",
263
+ "<SPECIAL_260>",
264
+ "<SPECIAL_261>",
265
+ "<SPECIAL_262>",
266
+ "<SPECIAL_263>",
267
+ "<SPECIAL_264>",
268
+ "<SPECIAL_265>",
269
+ "<SPECIAL_266>",
270
+ "<SPECIAL_267>",
271
+ "<SPECIAL_268>",
272
+ "<SPECIAL_269>",
273
+ "<SPECIAL_270>",
274
+ "<SPECIAL_271>",
275
+ "<SPECIAL_272>",
276
+ "<SPECIAL_273>",
277
+ "<SPECIAL_274>",
278
+ "<SPECIAL_275>",
279
+ "<SPECIAL_276>",
280
+ "<SPECIAL_277>",
281
+ "<SPECIAL_278>",
282
+ "<SPECIAL_279>",
283
+ "<SPECIAL_280>",
284
+ "<SPECIAL_281>",
285
+ "<SPECIAL_282>",
286
+ "<SPECIAL_283>",
287
+ "<SPECIAL_284>",
288
+ "<SPECIAL_285>",
289
+ "<SPECIAL_286>",
290
+ "<SPECIAL_287>",
291
+ "<SPECIAL_288>",
292
+ "<SPECIAL_289>",
293
+ "<SPECIAL_290>",
294
+ "<SPECIAL_291>",
295
+ "<SPECIAL_292>",
296
+ "<SPECIAL_293>",
297
+ "<SPECIAL_294>",
298
+ "<SPECIAL_295>",
299
+ "<SPECIAL_296>",
300
+ "<SPECIAL_297>",
301
+ "<SPECIAL_298>",
302
+ "<SPECIAL_299>",
303
+ "<SPECIAL_300>",
304
+ "<SPECIAL_301>",
305
+ "<SPECIAL_302>",
306
+ "<SPECIAL_303>",
307
+ "<SPECIAL_304>",
308
+ "<SPECIAL_305>",
309
+ "<SPECIAL_306>",
310
+ "<SPECIAL_307>",
311
+ "<SPECIAL_308>",
312
+ "<SPECIAL_309>",
313
+ "<SPECIAL_310>",
314
+ "<SPECIAL_311>",
315
+ "<SPECIAL_312>",
316
+ "<SPECIAL_313>",
317
+ "<SPECIAL_314>",
318
+ "<SPECIAL_315>",
319
+ "<SPECIAL_316>",
320
+ "<SPECIAL_317>",
321
+ "<SPECIAL_318>",
322
+ "<SPECIAL_319>",
323
+ "<SPECIAL_320>",
324
+ "<SPECIAL_321>",
325
+ "<SPECIAL_322>",
326
+ "<SPECIAL_323>",
327
+ "<SPECIAL_324>",
328
+ "<SPECIAL_325>",
329
+ "<SPECIAL_326>",
330
+ "<SPECIAL_327>",
331
+ "<SPECIAL_328>",
332
+ "<SPECIAL_329>",
333
+ "<SPECIAL_330>",
334
+ "<SPECIAL_331>",
335
+ "<SPECIAL_332>",
336
+ "<SPECIAL_333>",
337
+ "<SPECIAL_334>",
338
+ "<SPECIAL_335>",
339
+ "<SPECIAL_336>",
340
+ "<SPECIAL_337>",
341
+ "<SPECIAL_338>",
342
+ "<SPECIAL_339>",
343
+ "<SPECIAL_340>",
344
+ "<SPECIAL_341>",
345
+ "<SPECIAL_342>",
346
+ "<SPECIAL_343>",
347
+ "<SPECIAL_344>",
348
+ "<SPECIAL_345>",
349
+ "<SPECIAL_346>",
350
+ "<SPECIAL_347>",
351
+ "<SPECIAL_348>",
352
+ "<SPECIAL_349>",
353
+ "<SPECIAL_350>",
354
+ "<SPECIAL_351>",
355
+ "<SPECIAL_352>",
356
+ "<SPECIAL_353>",
357
+ "<SPECIAL_354>",
358
+ "<SPECIAL_355>",
359
+ "<SPECIAL_356>",
360
+ "<SPECIAL_357>",
361
+ "<SPECIAL_358>",
362
+ "<SPECIAL_359>",
363
+ "<SPECIAL_360>",
364
+ "<SPECIAL_361>",
365
+ "<SPECIAL_362>",
366
+ "<SPECIAL_363>",
367
+ "<SPECIAL_364>",
368
+ "<SPECIAL_365>",
369
+ "<SPECIAL_366>",
370
+ "<SPECIAL_367>",
371
+ "<SPECIAL_368>",
372
+ "<SPECIAL_369>",
373
+ "<SPECIAL_370>",
374
+ "<SPECIAL_371>",
375
+ "<SPECIAL_372>",
376
+ "<SPECIAL_373>",
377
+ "<SPECIAL_374>",
378
+ "<SPECIAL_375>",
379
+ "<SPECIAL_376>",
380
+ "<SPECIAL_377>",
381
+ "<SPECIAL_378>",
382
+ "<SPECIAL_379>",
383
+ "<SPECIAL_380>",
384
+ "<SPECIAL_381>",
385
+ "<SPECIAL_382>",
386
+ "<SPECIAL_383>",
387
+ "<SPECIAL_384>",
388
+ "<SPECIAL_385>",
389
+ "<SPECIAL_386>",
390
+ "<SPECIAL_387>",
391
+ "<SPECIAL_388>",
392
+ "<SPECIAL_389>",
393
+ "<SPECIAL_390>",
394
+ "<SPECIAL_391>",
395
+ "<SPECIAL_392>",
396
+ "<SPECIAL_393>",
397
+ "<SPECIAL_394>",
398
+ "<SPECIAL_395>",
399
+ "<SPECIAL_396>",
400
+ "<SPECIAL_397>",
401
+ "<SPECIAL_398>",
402
+ "<SPECIAL_399>",
403
+ "<SPECIAL_400>",
404
+ "<SPECIAL_401>",
405
+ "<SPECIAL_402>",
406
+ "<SPECIAL_403>",
407
+ "<SPECIAL_404>",
408
+ "<SPECIAL_405>",
409
+ "<SPECIAL_406>",
410
+ "<SPECIAL_407>",
411
+ "<SPECIAL_408>",
412
+ "<SPECIAL_409>",
413
+ "<SPECIAL_410>",
414
+ "<SPECIAL_411>",
415
+ "<SPECIAL_412>",
416
+ "<SPECIAL_413>",
417
+ "<SPECIAL_414>",
418
+ "<SPECIAL_415>",
419
+ "<SPECIAL_416>",
420
+ "<SPECIAL_417>",
421
+ "<SPECIAL_418>",
422
+ "<SPECIAL_419>",
423
+ "<SPECIAL_420>",
424
+ "<SPECIAL_421>",
425
+ "<SPECIAL_422>",
426
+ "<SPECIAL_423>",
427
+ "<SPECIAL_424>",
428
+ "<SPECIAL_425>",
429
+ "<SPECIAL_426>",
430
+ "<SPECIAL_427>",
431
+ "<SPECIAL_428>",
432
+ "<SPECIAL_429>",
433
+ "<SPECIAL_430>",
434
+ "<SPECIAL_431>",
435
+ "<SPECIAL_432>",
436
+ "<SPECIAL_433>",
437
+ "<SPECIAL_434>",
438
+ "<SPECIAL_435>",
439
+ "<SPECIAL_436>",
440
+ "<SPECIAL_437>",
441
+ "<SPECIAL_438>",
442
+ "<SPECIAL_439>",
443
+ "<SPECIAL_440>",
444
+ "<SPECIAL_441>",
445
+ "<SPECIAL_442>",
446
+ "<SPECIAL_443>",
447
+ "<SPECIAL_444>",
448
+ "<SPECIAL_445>",
449
+ "<SPECIAL_446>",
450
+ "<SPECIAL_447>",
451
+ "<SPECIAL_448>",
452
+ "<SPECIAL_449>",
453
+ "<SPECIAL_450>",
454
+ "<SPECIAL_451>",
455
+ "<SPECIAL_452>",
456
+ "<SPECIAL_453>",
457
+ "<SPECIAL_454>",
458
+ "<SPECIAL_455>",
459
+ "<SPECIAL_456>",
460
+ "<SPECIAL_457>",
461
+ "<SPECIAL_458>",
462
+ "<SPECIAL_459>",
463
+ "<SPECIAL_460>",
464
+ "<SPECIAL_461>",
465
+ "<SPECIAL_462>",
466
+ "<SPECIAL_463>",
467
+ "<SPECIAL_464>",
468
+ "<SPECIAL_465>",
469
+ "<SPECIAL_466>",
470
+ "<SPECIAL_467>",
471
+ "<SPECIAL_468>",
472
+ "<SPECIAL_469>",
473
+ "<SPECIAL_470>",
474
+ "<SPECIAL_471>",
475
+ "<SPECIAL_472>",
476
+ "<SPECIAL_473>",
477
+ "<SPECIAL_474>",
478
+ "<SPECIAL_475>",
479
+ "<SPECIAL_476>",
480
+ "<SPECIAL_477>",
481
+ "<SPECIAL_478>",
482
+ "<SPECIAL_479>",
483
+ "<SPECIAL_480>",
484
+ "<SPECIAL_481>",
485
+ "<SPECIAL_482>",
486
+ "<SPECIAL_483>",
487
+ "<SPECIAL_484>",
488
+ "<SPECIAL_485>",
489
+ "<SPECIAL_486>",
490
+ "<SPECIAL_487>",
491
+ "<SPECIAL_488>",
492
+ "<SPECIAL_489>",
493
+ "<SPECIAL_490>",
494
+ "<SPECIAL_491>",
495
+ "<SPECIAL_492>",
496
+ "<SPECIAL_493>",
497
+ "<SPECIAL_494>",
498
+ "<SPECIAL_495>",
499
+ "<SPECIAL_496>",
500
+ "<SPECIAL_497>",
501
+ "<SPECIAL_498>",
502
+ "<SPECIAL_499>",
503
+ "<SPECIAL_500>",
504
+ "<SPECIAL_501>",
505
+ "<SPECIAL_502>",
506
+ "<SPECIAL_503>",
507
+ "<SPECIAL_504>",
508
+ "<SPECIAL_505>",
509
+ "<SPECIAL_506>",
510
+ "<SPECIAL_507>",
511
+ "<SPECIAL_508>",
512
+ "<SPECIAL_509>",
513
+ "<SPECIAL_510>",
514
+ "<SPECIAL_511>",
515
+ "<SPECIAL_512>",
516
+ "<SPECIAL_513>",
517
+ "<SPECIAL_514>",
518
+ "<SPECIAL_515>",
519
+ "<SPECIAL_516>",
520
+ "<SPECIAL_517>",
521
+ "<SPECIAL_518>",
522
+ "<SPECIAL_519>",
523
+ "<SPECIAL_520>",
524
+ "<SPECIAL_521>",
525
+ "<SPECIAL_522>",
526
+ "<SPECIAL_523>",
527
+ "<SPECIAL_524>",
528
+ "<SPECIAL_525>",
529
+ "<SPECIAL_526>",
530
+ "<SPECIAL_527>",
531
+ "<SPECIAL_528>",
532
+ "<SPECIAL_529>",
533
+ "<SPECIAL_530>",
534
+ "<SPECIAL_531>",
535
+ "<SPECIAL_532>",
536
+ "<SPECIAL_533>",
537
+ "<SPECIAL_534>",
538
+ "<SPECIAL_535>",
539
+ "<SPECIAL_536>",
540
+ "<SPECIAL_537>",
541
+ "<SPECIAL_538>",
542
+ "<SPECIAL_539>",
543
+ "<SPECIAL_540>",
544
+ "<SPECIAL_541>",
545
+ "<SPECIAL_542>",
546
+ "<SPECIAL_543>",
547
+ "<SPECIAL_544>",
548
+ "<SPECIAL_545>",
549
+ "<SPECIAL_546>",
550
+ "<SPECIAL_547>",
551
+ "<SPECIAL_548>",
552
+ "<SPECIAL_549>",
553
+ "<SPECIAL_550>",
554
+ "<SPECIAL_551>",
555
+ "<SPECIAL_552>",
556
+ "<SPECIAL_553>",
557
+ "<SPECIAL_554>",
558
+ "<SPECIAL_555>",
559
+ "<SPECIAL_556>",
560
+ "<SPECIAL_557>",
561
+ "<SPECIAL_558>",
562
+ "<SPECIAL_559>",
563
+ "<SPECIAL_560>",
564
+ "<SPECIAL_561>",
565
+ "<SPECIAL_562>",
566
+ "<SPECIAL_563>",
567
+ "<SPECIAL_564>",
568
+ "<SPECIAL_565>",
569
+ "<SPECIAL_566>",
570
+ "<SPECIAL_567>",
571
+ "<SPECIAL_568>",
572
+ "<SPECIAL_569>",
573
+ "<SPECIAL_570>",
574
+ "<SPECIAL_571>",
575
+ "<SPECIAL_572>",
576
+ "<SPECIAL_573>",
577
+ "<SPECIAL_574>",
578
+ "<SPECIAL_575>",
579
+ "<SPECIAL_576>",
580
+ "<SPECIAL_577>",
581
+ "<SPECIAL_578>",
582
+ "<SPECIAL_579>",
583
+ "<SPECIAL_580>",
584
+ "<SPECIAL_581>",
585
+ "<SPECIAL_582>",
586
+ "<SPECIAL_583>",
587
+ "<SPECIAL_584>",
588
+ "<SPECIAL_585>",
589
+ "<SPECIAL_586>",
590
+ "<SPECIAL_587>",
591
+ "<SPECIAL_588>",
592
+ "<SPECIAL_589>",
593
+ "<SPECIAL_590>",
594
+ "<SPECIAL_591>",
595
+ "<SPECIAL_592>",
596
+ "<SPECIAL_593>",
597
+ "<SPECIAL_594>",
598
+ "<SPECIAL_595>",
599
+ "<SPECIAL_596>",
600
+ "<SPECIAL_597>",
601
+ "<SPECIAL_598>",
602
+ "<SPECIAL_599>",
603
+ "<SPECIAL_600>",
604
+ "<SPECIAL_601>",
605
+ "<SPECIAL_602>",
606
+ "<SPECIAL_603>",
607
+ "<SPECIAL_604>",
608
+ "<SPECIAL_605>",
609
+ "<SPECIAL_606>",
610
+ "<SPECIAL_607>",
611
+ "<SPECIAL_608>",
612
+ "<SPECIAL_609>",
613
+ "<SPECIAL_610>",
614
+ "<SPECIAL_611>",
615
+ "<SPECIAL_612>",
616
+ "<SPECIAL_613>",
617
+ "<SPECIAL_614>",
618
+ "<SPECIAL_615>",
619
+ "<SPECIAL_616>",
620
+ "<SPECIAL_617>",
621
+ "<SPECIAL_618>",
622
+ "<SPECIAL_619>",
623
+ "<SPECIAL_620>",
624
+ "<SPECIAL_621>",
625
+ "<SPECIAL_622>",
626
+ "<SPECIAL_623>",
627
+ "<SPECIAL_624>",
628
+ "<SPECIAL_625>",
629
+ "<SPECIAL_626>",
630
+ "<SPECIAL_627>",
631
+ "<SPECIAL_628>",
632
+ "<SPECIAL_629>",
633
+ "<SPECIAL_630>",
634
+ "<SPECIAL_631>",
635
+ "<SPECIAL_632>",
636
+ "<SPECIAL_633>",
637
+ "<SPECIAL_634>",
638
+ "<SPECIAL_635>",
639
+ "<SPECIAL_636>",
640
+ "<SPECIAL_637>",
641
+ "<SPECIAL_638>",
642
+ "<SPECIAL_639>",
643
+ "<SPECIAL_640>",
644
+ "<SPECIAL_641>",
645
+ "<SPECIAL_642>",
646
+ "<SPECIAL_643>",
647
+ "<SPECIAL_644>",
648
+ "<SPECIAL_645>",
649
+ "<SPECIAL_646>",
650
+ "<SPECIAL_647>",
651
+ "<SPECIAL_648>",
652
+ "<SPECIAL_649>",
653
+ "<SPECIAL_650>",
654
+ "<SPECIAL_651>",
655
+ "<SPECIAL_652>",
656
+ "<SPECIAL_653>",
657
+ "<SPECIAL_654>",
658
+ "<SPECIAL_655>",
659
+ "<SPECIAL_656>",
660
+ "<SPECIAL_657>",
661
+ "<SPECIAL_658>",
662
+ "<SPECIAL_659>",
663
+ "<SPECIAL_660>",
664
+ "<SPECIAL_661>",
665
+ "<SPECIAL_662>",
666
+ "<SPECIAL_663>",
667
+ "<SPECIAL_664>",
668
+ "<SPECIAL_665>",
669
+ "<SPECIAL_666>",
670
+ "<SPECIAL_667>",
671
+ "<SPECIAL_668>",
672
+ "<SPECIAL_669>",
673
+ "<SPECIAL_670>",
674
+ "<SPECIAL_671>",
675
+ "<SPECIAL_672>",
676
+ "<SPECIAL_673>",
677
+ "<SPECIAL_674>",
678
+ "<SPECIAL_675>",
679
+ "<SPECIAL_676>",
680
+ "<SPECIAL_677>",
681
+ "<SPECIAL_678>",
682
+ "<SPECIAL_679>",
683
+ "<SPECIAL_680>",
684
+ "<SPECIAL_681>",
685
+ "<SPECIAL_682>",
686
+ "<SPECIAL_683>",
687
+ "<SPECIAL_684>",
688
+ "<SPECIAL_685>",
689
+ "<SPECIAL_686>",
690
+ "<SPECIAL_687>",
691
+ "<SPECIAL_688>",
692
+ "<SPECIAL_689>",
693
+ "<SPECIAL_690>",
694
+ "<SPECIAL_691>",
695
+ "<SPECIAL_692>",
696
+ "<SPECIAL_693>",
697
+ "<SPECIAL_694>",
698
+ "<SPECIAL_695>",
699
+ "<SPECIAL_696>",
700
+ "<SPECIAL_697>",
701
+ "<SPECIAL_698>",
702
+ "<SPECIAL_699>",
703
+ "<SPECIAL_700>",
704
+ "<SPECIAL_701>",
705
+ "<SPECIAL_702>",
706
+ "<SPECIAL_703>",
707
+ "<SPECIAL_704>",
708
+ "<SPECIAL_705>",
709
+ "<SPECIAL_706>",
710
+ "<SPECIAL_707>",
711
+ "<SPECIAL_708>",
712
+ "<SPECIAL_709>",
713
+ "<SPECIAL_710>",
714
+ "<SPECIAL_711>",
715
+ "<SPECIAL_712>",
716
+ "<SPECIAL_713>",
717
+ "<SPECIAL_714>",
718
+ "<SPECIAL_715>",
719
+ "<SPECIAL_716>",
720
+ "<SPECIAL_717>",
721
+ "<SPECIAL_718>",
722
+ "<SPECIAL_719>",
723
+ "<SPECIAL_720>",
724
+ "<SPECIAL_721>",
725
+ "<SPECIAL_722>",
726
+ "<SPECIAL_723>",
727
+ "<SPECIAL_724>",
728
+ "<SPECIAL_725>",
729
+ "<SPECIAL_726>",
730
+ "<SPECIAL_727>",
731
+ "<SPECIAL_728>",
732
+ "<SPECIAL_729>",
733
+ "<SPECIAL_730>",
734
+ "<SPECIAL_731>",
735
+ "<SPECIAL_732>",
736
+ "<SPECIAL_733>",
737
+ "<SPECIAL_734>",
738
+ "<SPECIAL_735>",
739
+ "<SPECIAL_736>",
740
+ "<SPECIAL_737>",
741
+ "<SPECIAL_738>",
742
+ "<SPECIAL_739>",
743
+ "<SPECIAL_740>",
744
+ "<SPECIAL_741>",
745
+ "<SPECIAL_742>",
746
+ "<SPECIAL_743>",
747
+ "<SPECIAL_744>",
748
+ "<SPECIAL_745>",
749
+ "<SPECIAL_746>",
750
+ "<SPECIAL_747>",
751
+ "<SPECIAL_748>",
752
+ "<SPECIAL_749>",
753
+ "<SPECIAL_750>",
754
+ "<SPECIAL_751>",
755
+ "<SPECIAL_752>",
756
+ "<SPECIAL_753>",
757
+ "<SPECIAL_754>",
758
+ "<SPECIAL_755>",
759
+ "<SPECIAL_756>",
760
+ "<SPECIAL_757>",
761
+ "<SPECIAL_758>",
762
+ "<SPECIAL_759>",
763
+ "<SPECIAL_760>",
764
+ "<SPECIAL_761>",
765
+ "<SPECIAL_762>",
766
+ "<SPECIAL_763>",
767
+ "<SPECIAL_764>",
768
+ "<SPECIAL_765>",
769
+ "<SPECIAL_766>",
770
+ "<SPECIAL_767>",
771
+ "<SPECIAL_768>",
772
+ "<SPECIAL_769>",
773
+ "<SPECIAL_770>",
774
+ "<SPECIAL_771>",
775
+ "<SPECIAL_772>",
776
+ "<SPECIAL_773>",
777
+ "<SPECIAL_774>",
778
+ "<SPECIAL_775>",
779
+ "<SPECIAL_776>",
780
+ "<SPECIAL_777>",
781
+ "<SPECIAL_778>",
782
+ "<SPECIAL_779>",
783
+ "<SPECIAL_780>",
784
+ "<SPECIAL_781>",
785
+ "<SPECIAL_782>",
786
+ "<SPECIAL_783>",
787
+ "<SPECIAL_784>",
788
+ "<SPECIAL_785>",
789
+ "<SPECIAL_786>",
790
+ "<SPECIAL_787>",
791
+ "<SPECIAL_788>",
792
+ "<SPECIAL_789>",
793
+ "<SPECIAL_790>",
794
+ "<SPECIAL_791>",
795
+ "<SPECIAL_792>",
796
+ "<SPECIAL_793>",
797
+ "<SPECIAL_794>",
798
+ "<SPECIAL_795>",
799
+ "<SPECIAL_796>",
800
+ "<SPECIAL_797>",
801
+ "<SPECIAL_798>",
802
+ "<SPECIAL_799>",
803
+ "<SPECIAL_800>",
804
+ "<SPECIAL_801>",
805
+ "<SPECIAL_802>",
806
+ "<SPECIAL_803>",
807
+ "<SPECIAL_804>",
808
+ "<SPECIAL_805>",
809
+ "<SPECIAL_806>",
810
+ "<SPECIAL_807>",
811
+ "<SPECIAL_808>",
812
+ "<SPECIAL_809>",
813
+ "<SPECIAL_810>",
814
+ "<SPECIAL_811>",
815
+ "<SPECIAL_812>",
816
+ "<SPECIAL_813>",
817
+ "<SPECIAL_814>",
818
+ "<SPECIAL_815>",
819
+ "<SPECIAL_816>",
820
+ "<SPECIAL_817>",
821
+ "<SPECIAL_818>",
822
+ "<SPECIAL_819>",
823
+ "<SPECIAL_820>",
824
+ "<SPECIAL_821>",
825
+ "<SPECIAL_822>",
826
+ "<SPECIAL_823>",
827
+ "<SPECIAL_824>",
828
+ "<SPECIAL_825>",
829
+ "<SPECIAL_826>",
830
+ "<SPECIAL_827>",
831
+ "<SPECIAL_828>",
832
+ "<SPECIAL_829>",
833
+ "<SPECIAL_830>",
834
+ "<SPECIAL_831>",
835
+ "<SPECIAL_832>",
836
+ "<SPECIAL_833>",
837
+ "<SPECIAL_834>",
838
+ "<SPECIAL_835>",
839
+ "<SPECIAL_836>",
840
+ "<SPECIAL_837>",
841
+ "<SPECIAL_838>",
842
+ "<SPECIAL_839>",
843
+ "<SPECIAL_840>",
844
+ "<SPECIAL_841>",
845
+ "<SPECIAL_842>",
846
+ "<SPECIAL_843>",
847
+ "<SPECIAL_844>",
848
+ "<SPECIAL_845>",
849
+ "<SPECIAL_846>",
850
+ "<SPECIAL_847>",
851
+ "<SPECIAL_848>",
852
+ "<SPECIAL_849>",
853
+ "<SPECIAL_850>",
854
+ "<SPECIAL_851>",
855
+ "<SPECIAL_852>",
856
+ "<SPECIAL_853>",
857
+ "<SPECIAL_854>",
858
+ "<SPECIAL_855>",
859
+ "<SPECIAL_856>",
860
+ "<SPECIAL_857>",
861
+ "<SPECIAL_858>",
862
+ "<SPECIAL_859>",
863
+ "<SPECIAL_860>",
864
+ "<SPECIAL_861>",
865
+ "<SPECIAL_862>",
866
+ "<SPECIAL_863>",
867
+ "<SPECIAL_864>",
868
+ "<SPECIAL_865>",
869
+ "<SPECIAL_866>",
870
+ "<SPECIAL_867>",
871
+ "<SPECIAL_868>",
872
+ "<SPECIAL_869>",
873
+ "<SPECIAL_870>",
874
+ "<SPECIAL_871>",
875
+ "<SPECIAL_872>",
876
+ "<SPECIAL_873>",
877
+ "<SPECIAL_874>",
878
+ "<SPECIAL_875>",
879
+ "<SPECIAL_876>",
880
+ "<SPECIAL_877>",
881
+ "<SPECIAL_878>",
882
+ "<SPECIAL_879>",
883
+ "<SPECIAL_880>",
884
+ "<SPECIAL_881>",
885
+ "<SPECIAL_882>",
886
+ "<SPECIAL_883>",
887
+ "<SPECIAL_884>",
888
+ "<SPECIAL_885>",
889
+ "<SPECIAL_886>",
890
+ "<SPECIAL_887>",
891
+ "<SPECIAL_888>",
892
+ "<SPECIAL_889>",
893
+ "<SPECIAL_890>",
894
+ "<SPECIAL_891>",
895
+ "<SPECIAL_892>",
896
+ "<SPECIAL_893>",
897
+ "<SPECIAL_894>",
898
+ "<SPECIAL_895>",
899
+ "<SPECIAL_896>",
900
+ "<SPECIAL_897>",
901
+ "<SPECIAL_898>",
902
+ "<SPECIAL_899>",
903
+ "<SPECIAL_900>",
904
+ "<SPECIAL_901>",
905
+ "<SPECIAL_902>",
906
+ "<SPECIAL_903>",
907
+ "<SPECIAL_904>",
908
+ "<SPECIAL_905>",
909
+ "<SPECIAL_906>",
910
+ "<SPECIAL_907>",
911
+ "<SPECIAL_908>",
912
+ "<SPECIAL_909>",
913
+ "<SPECIAL_910>",
914
+ "<SPECIAL_911>",
915
+ "<SPECIAL_912>",
916
+ "<SPECIAL_913>",
917
+ "<SPECIAL_914>",
918
+ "<SPECIAL_915>",
919
+ "<SPECIAL_916>",
920
+ "<SPECIAL_917>",
921
+ "<SPECIAL_918>",
922
+ "<SPECIAL_919>",
923
+ "<SPECIAL_920>",
924
+ "<SPECIAL_921>",
925
+ "<SPECIAL_922>",
926
+ "<SPECIAL_923>",
927
+ "<SPECIAL_924>",
928
+ "<SPECIAL_925>",
929
+ "<SPECIAL_926>",
930
+ "<SPECIAL_927>",
931
+ "<SPECIAL_928>",
932
+ "<SPECIAL_929>",
933
+ "<SPECIAL_930>",
934
+ "<SPECIAL_931>",
935
+ "<SPECIAL_932>",
936
+ "<SPECIAL_933>",
937
+ "<SPECIAL_934>",
938
+ "<SPECIAL_935>",
939
+ "<SPECIAL_936>",
940
+ "<SPECIAL_937>",
941
+ "<SPECIAL_938>",
942
+ "<SPECIAL_939>",
943
+ "<SPECIAL_940>",
944
+ "<SPECIAL_941>",
945
+ "<SPECIAL_942>",
946
+ "<SPECIAL_943>",
947
+ "<SPECIAL_944>",
948
+ "<SPECIAL_945>",
949
+ "<SPECIAL_946>",
950
+ "<SPECIAL_947>",
951
+ "<SPECIAL_948>",
952
+ "<SPECIAL_949>",
953
+ "<SPECIAL_950>",
954
+ "<SPECIAL_951>",
955
+ "<SPECIAL_952>",
956
+ "<SPECIAL_953>",
957
+ "<SPECIAL_954>",
958
+ "<SPECIAL_955>",
959
+ "<SPECIAL_956>",
960
+ "<SPECIAL_957>",
961
+ "<SPECIAL_958>",
962
+ "<SPECIAL_959>",
963
+ "<SPECIAL_960>",
964
+ "<SPECIAL_961>",
965
+ "<SPECIAL_962>",
966
+ "<SPECIAL_963>",
967
+ "<SPECIAL_964>",
968
+ "<SPECIAL_965>",
969
+ "<SPECIAL_966>",
970
+ "<SPECIAL_967>",
971
+ "<SPECIAL_968>",
972
+ "<SPECIAL_969>",
973
+ "<SPECIAL_970>",
974
+ "<SPECIAL_971>",
975
+ "<SPECIAL_972>",
976
+ "<SPECIAL_973>",
977
+ "<SPECIAL_974>",
978
+ "<SPECIAL_975>",
979
+ "<SPECIAL_976>",
980
+ "<SPECIAL_977>",
981
+ "<SPECIAL_978>",
982
+ "<SPECIAL_979>",
983
+ "<SPECIAL_980>",
984
+ "<SPECIAL_981>",
985
+ "<SPECIAL_982>",
986
+ "<SPECIAL_983>",
987
+ "<SPECIAL_984>",
988
+ "<SPECIAL_985>",
989
+ "<SPECIAL_986>",
990
+ "<SPECIAL_987>",
991
+ "<SPECIAL_988>",
992
+ "<SPECIAL_989>",
993
+ "<SPECIAL_990>",
994
+ "<SPECIAL_991>",
995
+ "<SPECIAL_992>",
996
+ "<SPECIAL_993>",
997
+ "<SPECIAL_994>",
998
+ "<SPECIAL_995>",
999
+ "<SPECIAL_996>",
1000
+ "<SPECIAL_997>",
1001
+ "<SPECIAL_998>",
1002
+ "<SPECIAL_999>"
1003
+ ],
1004
+ "bos_token": {
1005
+ "content": "<s>",
1006
+ "lstrip": false,
1007
+ "normalized": false,
1008
+ "rstrip": false,
1009
+ "single_word": false
1010
+ },
1011
+ "eos_token": {
1012
+ "content": "</s>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false
1017
+ },
1018
+ "pad_token": {
1019
+ "content": "<pad>",
1020
+ "lstrip": false,
1021
+ "normalized": false,
1022
+ "rstrip": false,
1023
+ "single_word": false
1024
+ },
1025
+ "unk_token": {
1026
+ "content": "<unk>",
1027
+ "lstrip": false,
1028
+ "normalized": false,
1029
+ "rstrip": false,
1030
+ "single_word": false
1031
+ }
1032
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b76085f9923309d873994d444989f7eb6ec074b06f25b58f1e8d7b7741070949
3
+ size 17078037
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
trainer_state.json ADDED
@@ -0,0 +1,2217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9976019184652278,
5
+ "eval_steps": 500,
6
+ "global_step": 312,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0031974420463629096,
13
+ "grad_norm": 0.3446813225746155,
14
+ "learning_rate": 1.875e-05,
15
+ "loss": 2.181,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.006394884092725819,
20
+ "grad_norm": 0.30540090799331665,
21
+ "learning_rate": 3.75e-05,
22
+ "loss": 1.9989,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.009592326139088728,
27
+ "grad_norm": 0.33418309688568115,
28
+ "learning_rate": 5.625e-05,
29
+ "loss": 2.2171,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.012789768185451638,
34
+ "grad_norm": 0.3458963632583618,
35
+ "learning_rate": 7.5e-05,
36
+ "loss": 2.1132,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.01598721023181455,
41
+ "grad_norm": 0.3518303334712982,
42
+ "learning_rate": 9.374999999999999e-05,
43
+ "loss": 1.9712,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.019184652278177457,
48
+ "grad_norm": 0.3810424506664276,
49
+ "learning_rate": 0.0001125,
50
+ "loss": 1.7775,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.02238209432454037,
55
+ "grad_norm": 0.4941970109939575,
56
+ "learning_rate": 0.00013125,
57
+ "loss": 1.9399,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.025579536370903277,
62
+ "grad_norm": 0.3915010094642639,
63
+ "learning_rate": 0.00015,
64
+ "loss": 1.8796,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.02877697841726619,
69
+ "grad_norm": 0.3387204706668854,
70
+ "learning_rate": 0.00016874999999999998,
71
+ "loss": 1.8703,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.0319744204636291,
76
+ "grad_norm": 0.3416554927825928,
77
+ "learning_rate": 0.00018749999999999998,
78
+ "loss": 1.8606,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.035171862509992005,
83
+ "grad_norm": 0.36551880836486816,
84
+ "learning_rate": 0.00020624999999999997,
85
+ "loss": 1.5603,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.03836930455635491,
90
+ "grad_norm": 0.3075932264328003,
91
+ "learning_rate": 0.000225,
92
+ "loss": 1.5475,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.04156674660271783,
97
+ "grad_norm": 0.28144699335098267,
98
+ "learning_rate": 0.00024375,
99
+ "loss": 1.6917,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.04476418864908074,
104
+ "grad_norm": 0.27931058406829834,
105
+ "learning_rate": 0.0002625,
106
+ "loss": 1.4981,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.047961630695443645,
111
+ "grad_norm": 0.24638418853282928,
112
+ "learning_rate": 0.00028125,
113
+ "loss": 1.599,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.051159072741806554,
118
+ "grad_norm": 0.49918419122695923,
119
+ "learning_rate": 0.0003,
120
+ "loss": 1.5411,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.05435651478816946,
125
+ "grad_norm": 0.227300763130188,
126
+ "learning_rate": 0.00029999155161863667,
127
+ "loss": 1.4908,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.05755395683453238,
132
+ "grad_norm": 0.24631308019161224,
133
+ "learning_rate": 0.0002999662074262154,
134
+ "loss": 1.5127,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.060751398880895285,
139
+ "grad_norm": 0.20278117060661316,
140
+ "learning_rate": 0.00029992397027763483,
141
+ "loss": 1.5784,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.0639488409272582,
146
+ "grad_norm": 0.20311613380908966,
147
+ "learning_rate": 0.00029986484493070223,
148
+ "loss": 1.5577,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.0671462829736211,
153
+ "grad_norm": 0.22366106510162354,
154
+ "learning_rate": 0.00029978883804559716,
155
+ "loss": 1.6616,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.07034372501998401,
160
+ "grad_norm": 0.22588945925235748,
161
+ "learning_rate": 0.00029969595818412183,
162
+ "loss": 1.7524,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.07354116706634692,
167
+ "grad_norm": 0.20929686725139618,
168
+ "learning_rate": 0.000299586215808736,
169
+ "loss": 1.5186,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.07673860911270983,
174
+ "grad_norm": 0.2444813847541809,
175
+ "learning_rate": 0.00029945962328137895,
176
+ "loss": 1.5135,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.07993605115907274,
181
+ "grad_norm": 0.21571452915668488,
182
+ "learning_rate": 0.00029931619486207655,
183
+ "loss": 1.4799,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.08313349320543566,
188
+ "grad_norm": 0.2103520780801773,
189
+ "learning_rate": 0.00029915594670733536,
190
+ "loss": 1.6818,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.08633093525179857,
195
+ "grad_norm": 0.24929186701774597,
196
+ "learning_rate": 0.00029897889686832227,
197
+ "loss": 1.4392,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.08952837729816147,
202
+ "grad_norm": 0.24320849776268005,
203
+ "learning_rate": 0.0002987850652888315,
204
+ "loss": 1.5211,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.09272581934452438,
209
+ "grad_norm": 0.23468714952468872,
210
+ "learning_rate": 0.0002985744738030378,
211
+ "loss": 1.5468,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.09592326139088729,
216
+ "grad_norm": 0.2079857587814331,
217
+ "learning_rate": 0.0002983471461330368,
218
+ "loss": 1.5166,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.0991207034372502,
223
+ "grad_norm": 0.21627485752105713,
224
+ "learning_rate": 0.0002981031078861733,
225
+ "loss": 1.5507,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.10231814548361311,
230
+ "grad_norm": 0.23451927304267883,
231
+ "learning_rate": 0.00029784238655215626,
232
+ "loss": 1.508,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.10551558752997602,
237
+ "grad_norm": 0.2220710664987564,
238
+ "learning_rate": 0.0002975650114999625,
239
+ "loss": 1.5164,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.10871302957633892,
244
+ "grad_norm": 0.22487205266952515,
245
+ "learning_rate": 0.00029727101397452834,
246
+ "loss": 1.4938,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.11191047162270183,
251
+ "grad_norm": 0.2187684029340744,
252
+ "learning_rate": 0.00029696042709322995,
253
+ "loss": 1.3007,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.11510791366906475,
258
+ "grad_norm": 0.2184438705444336,
259
+ "learning_rate": 0.00029663328584215293,
260
+ "loss": 1.5204,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.11830535571542766,
265
+ "grad_norm": 0.21176907420158386,
266
+ "learning_rate": 0.00029628962707215124,
267
+ "loss": 1.5017,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.12150279776179057,
272
+ "grad_norm": 0.2055819034576416,
273
+ "learning_rate": 0.00029592948949469614,
274
+ "loss": 1.2755,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.12470023980815348,
279
+ "grad_norm": 0.220439150929451,
280
+ "learning_rate": 0.00029555291367751573,
281
+ "loss": 1.5057,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.1278976818545164,
286
+ "grad_norm": 0.2324652075767517,
287
+ "learning_rate": 0.00029515994204002484,
288
+ "loss": 1.5839,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.1310951239008793,
293
+ "grad_norm": 0.19285540282726288,
294
+ "learning_rate": 0.0002947506188485468,
295
+ "loss": 1.4434,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.1342925659472422,
300
+ "grad_norm": 0.26798316836357117,
301
+ "learning_rate": 0.00029432499021132737,
302
+ "loss": 1.6137,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.1374900079936051,
307
+ "grad_norm": 0.18407316505908966,
308
+ "learning_rate": 0.0002938831040733405,
309
+ "loss": 1.3876,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.14068745003996802,
314
+ "grad_norm": 0.2084178477525711,
315
+ "learning_rate": 0.0002934250102108876,
316
+ "loss": 1.5409,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.14388489208633093,
321
+ "grad_norm": 0.20955117046833038,
322
+ "learning_rate": 0.00029295076022599077,
323
+ "loss": 1.4635,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.14708233413269384,
328
+ "grad_norm": 0.2144644558429718,
329
+ "learning_rate": 0.00029246040754057976,
330
+ "loss": 1.4585,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.15027977617905675,
335
+ "grad_norm": 0.20352163910865784,
336
+ "learning_rate": 0.0002919540073904744,
337
+ "loss": 1.5338,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.15347721822541965,
342
+ "grad_norm": 0.18800681829452515,
343
+ "learning_rate": 0.0002914316168191626,
344
+ "loss": 1.5031,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.15667466027178256,
349
+ "grad_norm": 0.19407911598682404,
350
+ "learning_rate": 0.00029089329467137456,
351
+ "loss": 1.4457,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.15987210231814547,
356
+ "grad_norm": 0.19459669291973114,
357
+ "learning_rate": 0.0002903391015864543,
358
+ "loss": 1.3383,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.1630695443645084,
363
+ "grad_norm": 0.22761711478233337,
364
+ "learning_rate": 0.0002897690999915289,
365
+ "loss": 1.5057,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.16626698641087131,
370
+ "grad_norm": 0.22577515244483948,
371
+ "learning_rate": 0.0002891833540944764,
372
+ "loss": 1.3057,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.16946442845723422,
377
+ "grad_norm": 0.2257939875125885,
378
+ "learning_rate": 0.000288581929876693,
379
+ "loss": 1.4777,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.17266187050359713,
384
+ "grad_norm": 0.20815476775169373,
385
+ "learning_rate": 0.0002879648950856608,
386
+ "loss": 1.4252,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.17585931254996004,
391
+ "grad_norm": 0.20832973718643188,
392
+ "learning_rate": 0.0002873323192273162,
393
+ "loss": 1.5008,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.17905675459632295,
398
+ "grad_norm": 0.2152206003665924,
399
+ "learning_rate": 0.00028668427355822034,
400
+ "loss": 1.6078,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.18225419664268586,
405
+ "grad_norm": 0.18941529095172882,
406
+ "learning_rate": 0.0002860208310775327,
407
+ "loss": 1.4449,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.18545163868904876,
412
+ "grad_norm": 0.23700568079948425,
413
+ "learning_rate": 0.00028534206651878777,
414
+ "loss": 1.5582,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.18864908073541167,
419
+ "grad_norm": 0.2555181384086609,
420
+ "learning_rate": 0.0002846480563414768,
421
+ "loss": 1.5682,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.19184652278177458,
426
+ "grad_norm": 0.18711774051189423,
427
+ "learning_rate": 0.0002839388787224353,
428
+ "loss": 1.5051,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.1950439648281375,
433
+ "grad_norm": 0.2022084891796112,
434
+ "learning_rate": 0.00028321461354703604,
435
+ "loss": 1.4694,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.1982414068745004,
440
+ "grad_norm": 0.1778743863105774,
441
+ "learning_rate": 0.0002824753424001914,
442
+ "loss": 1.3847,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.2014388489208633,
447
+ "grad_norm": 0.1981406807899475,
448
+ "learning_rate": 0.0002817211485571623,
449
+ "loss": 1.3561,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.20463629096722621,
454
+ "grad_norm": 0.19981688261032104,
455
+ "learning_rate": 0.0002809521169741782,
456
+ "loss": 1.4506,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.20783373301358912,
461
+ "grad_norm": 0.20264656841754913,
462
+ "learning_rate": 0.0002801683342788671,
463
+ "loss": 1.5316,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.21103117505995203,
468
+ "grad_norm": 0.18628135323524475,
469
+ "learning_rate": 0.000279369888760497,
470
+ "loss": 1.4879,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.21422861710631494,
475
+ "grad_norm": 0.2130441665649414,
476
+ "learning_rate": 0.00027855687036003134,
477
+ "loss": 1.6192,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.21742605915267785,
482
+ "grad_norm": 0.19949516654014587,
483
+ "learning_rate": 0.00027772937065999667,
484
+ "loss": 1.4773,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.22062350119904076,
489
+ "grad_norm": 0.20962868630886078,
490
+ "learning_rate": 0.0002768874828741669,
491
+ "loss": 1.4617,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.22382094324540366,
496
+ "grad_norm": 0.21659812331199646,
497
+ "learning_rate": 0.00027603130183706314,
498
+ "loss": 1.5065,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.2270183852917666,
503
+ "grad_norm": 0.19917699694633484,
504
+ "learning_rate": 0.00027516092399327094,
505
+ "loss": 1.6265,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.2302158273381295,
510
+ "grad_norm": 0.20580779016017914,
511
+ "learning_rate": 0.0002742764473865763,
512
+ "loss": 1.4508,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.23341326938449242,
517
+ "grad_norm": 0.20578929781913757,
518
+ "learning_rate": 0.0002733779716489217,
519
+ "loss": 1.5362,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.23661071143085532,
524
+ "grad_norm": 0.21730633080005646,
525
+ "learning_rate": 0.0002724655979891828,
526
+ "loss": 1.4373,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.23980815347721823,
531
+ "grad_norm": 0.21635404229164124,
532
+ "learning_rate": 0.000271539429181768,
533
+ "loss": 1.3639,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.24300559552358114,
538
+ "grad_norm": 0.24112968146800995,
539
+ "learning_rate": 0.0002705995695550411,
540
+ "loss": 1.5238,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.24620303756994405,
545
+ "grad_norm": 0.20409514009952545,
546
+ "learning_rate": 0.00026964612497956946,
547
+ "loss": 1.4533,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.24940047961630696,
552
+ "grad_norm": 0.21514864265918732,
553
+ "learning_rate": 0.0002686792028561983,
554
+ "loss": 1.4657,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.25259792166266987,
559
+ "grad_norm": 0.20796911418437958,
560
+ "learning_rate": 0.00026769891210395207,
561
+ "loss": 1.4834,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.2557953637090328,
566
+ "grad_norm": 0.20425471663475037,
567
+ "learning_rate": 0.00026670536314776593,
568
+ "loss": 1.4799,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.2589928057553957,
573
+ "grad_norm": 0.1899542212486267,
574
+ "learning_rate": 0.0002656986679060462,
575
+ "loss": 1.4862,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.2621902478017586,
580
+ "grad_norm": 0.20222659409046173,
581
+ "learning_rate": 0.00026467893977806387,
582
+ "loss": 1.4788,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.2653876898481215,
587
+ "grad_norm": 0.1941121220588684,
588
+ "learning_rate": 0.0002636462936311804,
589
+ "loss": 1.4913,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.2685851318944844,
594
+ "grad_norm": 0.21576811373233795,
595
+ "learning_rate": 0.0002626008457879086,
596
+ "loss": 1.5327,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.2717825739408473,
601
+ "grad_norm": 0.1937507688999176,
602
+ "learning_rate": 0.00026154271401280957,
603
+ "loss": 1.4609,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.2749800159872102,
608
+ "grad_norm": 0.18996623158454895,
609
+ "learning_rate": 0.0002604720174992268,
610
+ "loss": 1.4023,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.27817745803357313,
615
+ "grad_norm": 0.20716165006160736,
616
+ "learning_rate": 0.00025938887685585994,
617
+ "loss": 1.5351,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.28137490007993604,
622
+ "grad_norm": 0.20239269733428955,
623
+ "learning_rate": 0.0002582934140931786,
624
+ "loss": 1.4851,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.28457234212629895,
629
+ "grad_norm": 0.20915232598781586,
630
+ "learning_rate": 0.0002571857526096788,
631
+ "loss": 1.3798,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.28776978417266186,
636
+ "grad_norm": 0.20972570776939392,
637
+ "learning_rate": 0.00025606601717798207,
638
+ "loss": 1.4097,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.29096722621902477,
643
+ "grad_norm": 0.20584455132484436,
644
+ "learning_rate": 0.0002549343339307813,
645
+ "loss": 1.5279,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.2941646682653877,
650
+ "grad_norm": 0.1897670328617096,
651
+ "learning_rate": 0.00025379083034663194,
652
+ "loss": 1.603,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.2973621103117506,
657
+ "grad_norm": 0.19150228798389435,
658
+ "learning_rate": 0.000252635635235592,
659
+ "loss": 1.3939,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.3005595523581135,
664
+ "grad_norm": 0.1970176249742508,
665
+ "learning_rate": 0.00025146887872471303,
666
+ "loss": 1.468,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.3037569944044764,
671
+ "grad_norm": 0.19097474217414856,
672
+ "learning_rate": 0.000250290692243381,
673
+ "loss": 1.4303,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.3069544364508393,
678
+ "grad_norm": 0.21538837254047394,
679
+ "learning_rate": 0.00024910120850851216,
680
+ "loss": 1.5775,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.3101518784972022,
685
+ "grad_norm": 0.1855296939611435,
686
+ "learning_rate": 0.0002479005615096028,
687
+ "loss": 1.413,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.3133493205435651,
692
+ "grad_norm": 0.23258726298809052,
693
+ "learning_rate": 0.00024668888649363583,
694
+ "loss": 1.5517,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.31654676258992803,
699
+ "grad_norm": 0.19402435421943665,
700
+ "learning_rate": 0.0002454663199498463,
701
+ "loss": 1.3835,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.31974420463629094,
706
+ "grad_norm": 0.1976032257080078,
707
+ "learning_rate": 0.00024423299959434636,
708
+ "loss": 1.4637,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.3229416466826539,
713
+ "grad_norm": 0.19951173663139343,
714
+ "learning_rate": 0.0002429890643546119,
715
+ "loss": 1.3731,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.3261390887290168,
720
+ "grad_norm": 0.20681437849998474,
721
+ "learning_rate": 0.0002417346543538337,
722
+ "loss": 1.4865,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.3293365307753797,
727
+ "grad_norm": 0.36958593130111694,
728
+ "learning_rate": 0.00024046991089513267,
729
+ "loss": 1.4612,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.33253397282174263,
734
+ "grad_norm": 0.20621562004089355,
735
+ "learning_rate": 0.00023919497644564298,
736
+ "loss": 1.357,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.33573141486810554,
741
+ "grad_norm": 0.18956023454666138,
742
+ "learning_rate": 0.00023790999462046394,
743
+ "loss": 1.6554,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.33892885691446845,
748
+ "grad_norm": 0.2084682583808899,
749
+ "learning_rate": 0.0002366151101664822,
750
+ "loss": 1.4853,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.34212629896083135,
755
+ "grad_norm": 0.17509467899799347,
756
+ "learning_rate": 0.00023531046894606703,
757
+ "loss": 1.4028,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.34532374100719426,
762
+ "grad_norm": 0.19247236847877502,
763
+ "learning_rate": 0.00023399621792063928,
764
+ "loss": 1.4353,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.34852118305355717,
769
+ "grad_norm": 0.19204045832157135,
770
+ "learning_rate": 0.00023267250513411733,
771
+ "loss": 1.3393,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.3517186250999201,
776
+ "grad_norm": 0.20329782366752625,
777
+ "learning_rate": 0.00023133947969624028,
778
+ "loss": 1.6107,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.354916067146283,
783
+ "grad_norm": 0.2169138640165329,
784
+ "learning_rate": 0.00022999729176577163,
785
+ "loss": 1.4617,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.3581135091926459,
790
+ "grad_norm": 0.22543761134147644,
791
+ "learning_rate": 0.00022864609253358474,
792
+ "loss": 1.4731,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.3613109512390088,
797
+ "grad_norm": 0.19519487023353577,
798
+ "learning_rate": 0.00022728603420563175,
799
+ "loss": 1.597,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.3645083932853717,
804
+ "grad_norm": 0.20843897759914398,
805
+ "learning_rate": 0.00022591726998579843,
806
+ "loss": 1.4963,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.3677058353317346,
811
+ "grad_norm": 0.2149285078048706,
812
+ "learning_rate": 0.00022453995405864638,
813
+ "loss": 1.5095,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.37090327737809753,
818
+ "grad_norm": 0.19521689414978027,
819
+ "learning_rate": 0.00022315424157204518,
820
+ "loss": 1.5709,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.37410071942446044,
825
+ "grad_norm": 0.19614940881729126,
826
+ "learning_rate": 0.00022176028861969535,
827
+ "loss": 1.4573,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.37729816147082335,
832
+ "grad_norm": 0.1948356330394745,
833
+ "learning_rate": 0.00022035825222354552,
834
+ "loss": 1.309,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.38049560351718625,
839
+ "grad_norm": 0.20020437240600586,
840
+ "learning_rate": 0.00021894829031610452,
841
+ "loss": 1.5289,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.38369304556354916,
846
+ "grad_norm": 0.20084881782531738,
847
+ "learning_rate": 0.00021753056172265096,
848
+ "loss": 1.5456,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.38689048760991207,
853
+ "grad_norm": 0.17715269327163696,
854
+ "learning_rate": 0.00021610522614334265,
855
+ "loss": 1.4322,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.390087929656275,
860
+ "grad_norm": 0.2064034342765808,
861
+ "learning_rate": 0.00021467244413522673,
862
+ "loss": 1.5772,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.3932853717026379,
867
+ "grad_norm": 0.19036740064620972,
868
+ "learning_rate": 0.00021323237709415413,
869
+ "loss": 1.5086,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.3964828137490008,
874
+ "grad_norm": 0.19214606285095215,
875
+ "learning_rate": 0.0002117851872365989,
876
+ "loss": 1.5296,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 0.3996802557953637,
881
+ "grad_norm": 0.20223727822303772,
882
+ "learning_rate": 0.00021033103758138529,
883
+ "loss": 1.5354,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 0.4028776978417266,
888
+ "grad_norm": 0.18433460593223572,
889
+ "learning_rate": 0.00020887009193132456,
890
+ "loss": 1.532,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 0.4060751398880895,
895
+ "grad_norm": 0.18365609645843506,
896
+ "learning_rate": 0.00020740251485476345,
897
+ "loss": 1.3326,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 0.40927258193445243,
902
+ "grad_norm": 0.19547204673290253,
903
+ "learning_rate": 0.0002059284716670463,
904
+ "loss": 1.4566,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 0.41247002398081534,
909
+ "grad_norm": 0.2268918752670288,
910
+ "learning_rate": 0.00020444812841189294,
911
+ "loss": 1.6165,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 0.41566746602717825,
916
+ "grad_norm": 0.21848422288894653,
917
+ "learning_rate": 0.0002029616518426951,
918
+ "loss": 1.6039,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 0.41886490807354115,
923
+ "grad_norm": 0.19918426871299744,
924
+ "learning_rate": 0.00020146920940373195,
925
+ "loss": 1.4602,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 0.42206235011990406,
930
+ "grad_norm": 0.18590374290943146,
931
+ "learning_rate": 0.00019997096921130862,
932
+ "loss": 1.2925,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 0.42525979216626697,
937
+ "grad_norm": 0.19987183809280396,
938
+ "learning_rate": 0.00019846710003481875,
939
+ "loss": 1.4157,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 0.4284572342126299,
944
+ "grad_norm": 0.20987945795059204,
945
+ "learning_rate": 0.00019695777127773332,
946
+ "loss": 1.4424,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 0.4316546762589928,
951
+ "grad_norm": 0.21076463162899017,
952
+ "learning_rate": 0.00019544315295851825,
953
+ "loss": 1.4946,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 0.4348521183053557,
958
+ "grad_norm": 0.20848603546619415,
959
+ "learning_rate": 0.00019392341569148252,
960
+ "loss": 1.4393,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 0.4380495603517186,
965
+ "grad_norm": 0.21943925321102142,
966
+ "learning_rate": 0.00019239873066755964,
967
+ "loss": 1.6161,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 0.4412470023980815,
972
+ "grad_norm": 0.23087991774082184,
973
+ "learning_rate": 0.0001908692696350234,
974
+ "loss": 1.3502,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 0.4444444444444444,
979
+ "grad_norm": 0.20302651822566986,
980
+ "learning_rate": 0.00018933520488014166,
981
+ "loss": 1.3896,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 0.44764188649080733,
986
+ "grad_norm": 0.19597011804580688,
987
+ "learning_rate": 0.00018779670920776877,
988
+ "loss": 1.4437,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 0.45083932853717024,
993
+ "grad_norm": 0.21784569323062897,
994
+ "learning_rate": 0.00018625395592188036,
995
+ "loss": 1.5956,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 0.4540367705835332,
1000
+ "grad_norm": 0.20360009372234344,
1001
+ "learning_rate": 0.00018470711880605122,
1002
+ "loss": 1.2507,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 0.4572342126298961,
1007
+ "grad_norm": 0.1850934773683548,
1008
+ "learning_rate": 0.00018315637210387947,
1009
+ "loss": 1.477,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 0.460431654676259,
1014
+ "grad_norm": 0.22538472712039948,
1015
+ "learning_rate": 0.00018160189049935892,
1016
+ "loss": 1.3688,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 0.4636290967226219,
1021
+ "grad_norm": 0.2093997299671173,
1022
+ "learning_rate": 0.00018004384909720188,
1023
+ "loss": 1.3953,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 0.46682653876898483,
1028
+ "grad_norm": 0.19743283092975616,
1029
+ "learning_rate": 0.00017848242340311424,
1030
+ "loss": 1.5111,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 0.47002398081534774,
1035
+ "grad_norm": 0.23592239618301392,
1036
+ "learning_rate": 0.0001769177893040258,
1037
+ "loss": 1.4628,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 0.47322142286171065,
1042
+ "grad_norm": 0.2107086479663849,
1043
+ "learning_rate": 0.00017535012304827736,
1044
+ "loss": 1.345,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 0.47641886490807356,
1049
+ "grad_norm": 0.212343230843544,
1050
+ "learning_rate": 0.00017377960122576732,
1051
+ "loss": 1.4294,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 0.47961630695443647,
1056
+ "grad_norm": 0.280923455953598,
1057
+ "learning_rate": 0.0001722064007480597,
1058
+ "loss": 1.6237,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 0.4828137490007994,
1063
+ "grad_norm": 0.19629351794719696,
1064
+ "learning_rate": 0.00017063069882845575,
1065
+ "loss": 1.439,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 0.4860111910471623,
1070
+ "grad_norm": 0.2047591209411621,
1071
+ "learning_rate": 0.0001690526729620318,
1072
+ "loss": 1.3626,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 0.4892086330935252,
1077
+ "grad_norm": 0.18259218335151672,
1078
+ "learning_rate": 0.00016747250090564557,
1079
+ "loss": 1.3234,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 0.4924060751398881,
1084
+ "grad_norm": 0.20569853484630585,
1085
+ "learning_rate": 0.00016589036065791242,
1086
+ "loss": 1.4376,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 0.495603517186251,
1091
+ "grad_norm": 0.18437625467777252,
1092
+ "learning_rate": 0.0001643064304391547,
1093
+ "loss": 1.4705,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 0.4988009592326139,
1098
+ "grad_norm": 0.22610221803188324,
1099
+ "learning_rate": 0.00016272088867132637,
1100
+ "loss": 1.3045,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 0.5019984012789768,
1105
+ "grad_norm": 0.197098046541214,
1106
+ "learning_rate": 0.00016113391395791436,
1107
+ "loss": 1.531,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 0.5051958433253397,
1112
+ "grad_norm": 0.2230396866798401,
1113
+ "learning_rate": 0.00015954568506381994,
1114
+ "loss": 1.5164,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 0.5083932853717026,
1119
+ "grad_norm": 0.19642704725265503,
1120
+ "learning_rate": 0.0001579563808952216,
1121
+ "loss": 1.4442,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 0.5115907274180655,
1126
+ "grad_norm": 0.21066069602966309,
1127
+ "learning_rate": 0.00015636618047942222,
1128
+ "loss": 1.4251,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 0.5147881694644284,
1133
+ "grad_norm": 0.18799303472042084,
1134
+ "learning_rate": 0.0001547752629446827,
1135
+ "loss": 1.3866,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 0.5179856115107914,
1140
+ "grad_norm": 0.20167718827724457,
1141
+ "learning_rate": 0.00015318380750004352,
1142
+ "loss": 1.471,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 0.5211830535571543,
1147
+ "grad_norm": 0.20787064731121063,
1148
+ "learning_rate": 0.00015159199341513845,
1149
+ "loss": 1.5312,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 0.5243804956035172,
1154
+ "grad_norm": 0.19502943754196167,
1155
+ "learning_rate": 0.00015,
1156
+ "loss": 1.5153,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 0.5275779376498801,
1161
+ "grad_norm": 0.18463830649852753,
1162
+ "learning_rate": 0.00014840800658486158,
1163
+ "loss": 1.62,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 0.530775379696243,
1168
+ "grad_norm": 0.20096978545188904,
1169
+ "learning_rate": 0.00014681619249995646,
1170
+ "loss": 1.3816,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 0.533972821742606,
1175
+ "grad_norm": 0.20995350182056427,
1176
+ "learning_rate": 0.00014522473705531736,
1177
+ "loss": 1.4321,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 0.5371702637889688,
1182
+ "grad_norm": 0.1865735948085785,
1183
+ "learning_rate": 0.00014363381952057778,
1184
+ "loss": 1.4262,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 0.5403677058353318,
1189
+ "grad_norm": 0.1792657971382141,
1190
+ "learning_rate": 0.00014204361910477844,
1191
+ "loss": 1.5558,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 0.5435651478816946,
1196
+ "grad_norm": 0.2027653157711029,
1197
+ "learning_rate": 0.00014045431493618003,
1198
+ "loss": 1.3377,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 0.5467625899280576,
1203
+ "grad_norm": 0.19514119625091553,
1204
+ "learning_rate": 0.0001388660860420856,
1205
+ "loss": 1.3874,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 0.5499600319744204,
1210
+ "grad_norm": 0.17817656695842743,
1211
+ "learning_rate": 0.00013727911132867365,
1212
+ "loss": 1.3716,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 0.5531574740207834,
1217
+ "grad_norm": 0.23043349385261536,
1218
+ "learning_rate": 0.00013569356956084528,
1219
+ "loss": 1.464,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 0.5563549160671463,
1224
+ "grad_norm": 0.19135528802871704,
1225
+ "learning_rate": 0.00013410963934208759,
1226
+ "loss": 1.3154,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 0.5595523581135092,
1231
+ "grad_norm": 0.20745159685611725,
1232
+ "learning_rate": 0.0001325274990943544,
1233
+ "loss": 1.4785,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 0.5627498001598721,
1238
+ "grad_norm": 0.20532263815402985,
1239
+ "learning_rate": 0.00013094732703796818,
1240
+ "loss": 1.5137,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 0.565947242206235,
1245
+ "grad_norm": 0.21446797251701355,
1246
+ "learning_rate": 0.00012936930117154425,
1247
+ "loss": 1.3701,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 0.5691446842525979,
1252
+ "grad_norm": 0.19260822236537933,
1253
+ "learning_rate": 0.0001277935992519403,
1254
+ "loss": 1.4443,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 0.5723421262989609,
1259
+ "grad_norm": 0.19996041059494019,
1260
+ "learning_rate": 0.00012622039877423265,
1261
+ "loss": 1.371,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 0.5755395683453237,
1266
+ "grad_norm": 0.19244007766246796,
1267
+ "learning_rate": 0.00012464987695172264,
1268
+ "loss": 1.3142,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 0.5787370103916867,
1273
+ "grad_norm": 0.19164302945137024,
1274
+ "learning_rate": 0.00012308221069597418,
1275
+ "loss": 1.4773,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 0.5819344524380495,
1280
+ "grad_norm": 0.20002460479736328,
1281
+ "learning_rate": 0.00012151757659688571,
1282
+ "loss": 1.4264,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 0.5851318944844125,
1287
+ "grad_norm": 0.21552026271820068,
1288
+ "learning_rate": 0.00011995615090279813,
1289
+ "loss": 1.4049,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 0.5883293365307753,
1294
+ "grad_norm": 0.19300565123558044,
1295
+ "learning_rate": 0.00011839810950064109,
1296
+ "loss": 1.3554,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 0.5915267785771383,
1301
+ "grad_norm": 0.19941386580467224,
1302
+ "learning_rate": 0.00011684362789612053,
1303
+ "loss": 1.5601,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 0.5947242206235012,
1308
+ "grad_norm": 0.18221646547317505,
1309
+ "learning_rate": 0.00011529288119394878,
1310
+ "loss": 1.4828,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 0.5979216626698641,
1315
+ "grad_norm": 0.1901618093252182,
1316
+ "learning_rate": 0.00011374604407811962,
1317
+ "loss": 1.5442,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 0.601119104716227,
1322
+ "grad_norm": 0.17420263588428497,
1323
+ "learning_rate": 0.00011220329079223123,
1324
+ "loss": 1.285,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 0.60431654676259,
1329
+ "grad_norm": 0.23658356070518494,
1330
+ "learning_rate": 0.00011066479511985838,
1331
+ "loss": 1.2485,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 0.6075139888089528,
1336
+ "grad_norm": 0.20968788862228394,
1337
+ "learning_rate": 0.00010913073036497658,
1338
+ "loss": 1.3972,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 0.6107114308553158,
1343
+ "grad_norm": 0.2030273675918579,
1344
+ "learning_rate": 0.00010760126933244036,
1345
+ "loss": 1.6353,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 0.6139088729016786,
1350
+ "grad_norm": 0.1902075558900833,
1351
+ "learning_rate": 0.00010607658430851744,
1352
+ "loss": 1.2809,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 0.6171063149480416,
1357
+ "grad_norm": 0.20934785902500153,
1358
+ "learning_rate": 0.00010455684704148173,
1359
+ "loss": 1.3585,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 0.6203037569944044,
1364
+ "grad_norm": 0.2173265963792801,
1365
+ "learning_rate": 0.00010304222872226668,
1366
+ "loss": 1.2973,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 0.6235011990407674,
1371
+ "grad_norm": 0.19533811509609222,
1372
+ "learning_rate": 0.00010153289996518125,
1373
+ "loss": 1.4299,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 0.6266986410871302,
1378
+ "grad_norm": 0.2015613615512848,
1379
+ "learning_rate": 0.00010002903078869135,
1380
+ "loss": 1.4279,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 0.6298960831334932,
1385
+ "grad_norm": 0.20218639075756073,
1386
+ "learning_rate": 9.853079059626805e-05,
1387
+ "loss": 1.3212,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 0.6330935251798561,
1392
+ "grad_norm": 0.1902882307767868,
1393
+ "learning_rate": 9.703834815730487e-05,
1394
+ "loss": 1.3939,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 0.636290967226219,
1399
+ "grad_norm": 0.18366214632987976,
1400
+ "learning_rate": 9.555187158810702e-05,
1401
+ "loss": 1.4403,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 0.6394884092725819,
1406
+ "grad_norm": 0.1821315586566925,
1407
+ "learning_rate": 9.407152833295372e-05,
1408
+ "loss": 1.372,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 0.6426858513189448,
1413
+ "grad_norm": 0.20973654091358185,
1414
+ "learning_rate": 9.259748514523653e-05,
1415
+ "loss": 1.4149,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 0.6458832933653078,
1420
+ "grad_norm": 0.18254290521144867,
1421
+ "learning_rate": 9.112990806867543e-05,
1422
+ "loss": 1.3052,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 0.6490807354116707,
1427
+ "grad_norm": 0.18717211484909058,
1428
+ "learning_rate": 8.966896241861473e-05,
1429
+ "loss": 1.4061,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 0.6522781774580336,
1434
+ "grad_norm": 0.17621521651744843,
1435
+ "learning_rate": 8.821481276340112e-05,
1436
+ "loss": 1.6093,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 0.6554756195043965,
1441
+ "grad_norm": 0.1912049949169159,
1442
+ "learning_rate": 8.676762290584585e-05,
1443
+ "loss": 1.353,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 0.6586730615507594,
1448
+ "grad_norm": 0.2157009094953537,
1449
+ "learning_rate": 8.532755586477324e-05,
1450
+ "loss": 1.4063,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 0.6618705035971223,
1455
+ "grad_norm": 0.18072722852230072,
1456
+ "learning_rate": 8.389477385665732e-05,
1457
+ "loss": 1.5591,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 0.6650679456434853,
1462
+ "grad_norm": 0.22034448385238647,
1463
+ "learning_rate": 8.246943827734897e-05,
1464
+ "loss": 1.4766,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 0.6682653876898481,
1469
+ "grad_norm": 0.21938645839691162,
1470
+ "learning_rate": 8.105170968389552e-05,
1471
+ "loss": 1.3791,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 0.6714628297362111,
1476
+ "grad_norm": 0.19702577590942383,
1477
+ "learning_rate": 7.964174777645448e-05,
1478
+ "loss": 1.5582,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 0.6746602717825739,
1483
+ "grad_norm": 0.20586428046226501,
1484
+ "learning_rate": 7.823971138030466e-05,
1485
+ "loss": 1.4005,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 0.6778577138289369,
1490
+ "grad_norm": 0.1924622356891632,
1491
+ "learning_rate": 7.684575842795485e-05,
1492
+ "loss": 1.4078,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 0.6810551558752997,
1497
+ "grad_norm": 0.1937723606824875,
1498
+ "learning_rate": 7.546004594135356e-05,
1499
+ "loss": 1.2821,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 0.6842525979216627,
1504
+ "grad_norm": 0.22969581186771393,
1505
+ "learning_rate": 7.408273001420153e-05,
1506
+ "loss": 1.2398,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 0.6874500399680256,
1511
+ "grad_norm": 0.19231727719306946,
1512
+ "learning_rate": 7.271396579436825e-05,
1513
+ "loss": 1.3752,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 0.6906474820143885,
1518
+ "grad_norm": 0.20469219982624054,
1519
+ "learning_rate": 7.135390746641526e-05,
1520
+ "loss": 1.352,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 0.6938449240607514,
1525
+ "grad_norm": 0.19728676974773407,
1526
+ "learning_rate": 7.000270823422837e-05,
1527
+ "loss": 1.5623,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 0.6970423661071143,
1532
+ "grad_norm": 0.22052626311779022,
1533
+ "learning_rate": 6.866052030375974e-05,
1534
+ "loss": 1.4183,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 0.7002398081534772,
1539
+ "grad_norm": 0.19779476523399353,
1540
+ "learning_rate": 6.732749486588266e-05,
1541
+ "loss": 1.4014,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 0.7034372501998402,
1546
+ "grad_norm": 0.1978594809770584,
1547
+ "learning_rate": 6.600378207936069e-05,
1548
+ "loss": 1.4317,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 0.706634692246203,
1553
+ "grad_norm": 0.2020850032567978,
1554
+ "learning_rate": 6.468953105393297e-05,
1555
+ "loss": 1.4208,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 0.709832134292566,
1560
+ "grad_norm": 0.18292494118213654,
1561
+ "learning_rate": 6.338488983351777e-05,
1562
+ "loss": 1.3283,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 0.7130295763389288,
1567
+ "grad_norm": 0.2223280966281891,
1568
+ "learning_rate": 6.209000537953605e-05,
1569
+ "loss": 1.4245,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 0.7162270183852918,
1574
+ "grad_norm": 0.22692078351974487,
1575
+ "learning_rate": 6.080502355435701e-05,
1576
+ "loss": 1.5982,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 0.7194244604316546,
1581
+ "grad_norm": 0.19702717661857605,
1582
+ "learning_rate": 5.9530089104867386e-05,
1583
+ "loss": 1.3909,
1584
+ "step": 225
1585
+ },
1586
+ {
1587
+ "epoch": 0.7226219024780176,
1588
+ "grad_norm": 0.22220925986766815,
1589
+ "learning_rate": 5.826534564616633e-05,
1590
+ "loss": 1.4322,
1591
+ "step": 226
1592
+ },
1593
+ {
1594
+ "epoch": 0.7258193445243805,
1595
+ "grad_norm": 0.20837551355361938,
1596
+ "learning_rate": 5.701093564538806e-05,
1597
+ "loss": 1.3919,
1598
+ "step": 227
1599
+ },
1600
+ {
1601
+ "epoch": 0.7290167865707434,
1602
+ "grad_norm": 0.1905641108751297,
1603
+ "learning_rate": 5.5767000405653636e-05,
1604
+ "loss": 1.446,
1605
+ "step": 228
1606
+ },
1607
+ {
1608
+ "epoch": 0.7322142286171063,
1609
+ "grad_norm": 0.20399922132492065,
1610
+ "learning_rate": 5.453368005015363e-05,
1611
+ "loss": 1.3922,
1612
+ "step": 229
1613
+ },
1614
+ {
1615
+ "epoch": 0.7354116706634692,
1616
+ "grad_norm": 0.19176483154296875,
1617
+ "learning_rate": 5.3311113506364116e-05,
1618
+ "loss": 1.3255,
1619
+ "step": 230
1620
+ },
1621
+ {
1622
+ "epoch": 0.7386091127098321,
1623
+ "grad_norm": 0.21297192573547363,
1624
+ "learning_rate": 5.209943849039722e-05,
1625
+ "loss": 1.3992,
1626
+ "step": 231
1627
+ },
1628
+ {
1629
+ "epoch": 0.7418065547561951,
1630
+ "grad_norm": 0.20219087600708008,
1631
+ "learning_rate": 5.089879149148781e-05,
1632
+ "loss": 1.5462,
1633
+ "step": 232
1634
+ },
1635
+ {
1636
+ "epoch": 0.7450039968025579,
1637
+ "grad_norm": 0.1977456510066986,
1638
+ "learning_rate": 4.9709307756618985e-05,
1639
+ "loss": 1.4046,
1640
+ "step": 233
1641
+ },
1642
+ {
1643
+ "epoch": 0.7482014388489209,
1644
+ "grad_norm": 0.22329548001289368,
1645
+ "learning_rate": 4.853112127528698e-05,
1646
+ "loss": 1.5767,
1647
+ "step": 234
1648
+ },
1649
+ {
1650
+ "epoch": 0.7513988808952837,
1651
+ "grad_norm": 0.20563232898712158,
1652
+ "learning_rate": 4.736436476440791e-05,
1653
+ "loss": 1.6348,
1654
+ "step": 235
1655
+ },
1656
+ {
1657
+ "epoch": 0.7545963229416467,
1658
+ "grad_norm": 0.19388997554779053,
1659
+ "learning_rate": 4.6209169653368086e-05,
1660
+ "loss": 1.364,
1661
+ "step": 236
1662
+ },
1663
+ {
1664
+ "epoch": 0.7577937649880095,
1665
+ "grad_norm": 0.2103840559720993,
1666
+ "learning_rate": 4.506566606921864e-05,
1667
+ "loss": 1.4538,
1668
+ "step": 237
1669
+ },
1670
+ {
1671
+ "epoch": 0.7609912070343725,
1672
+ "grad_norm": 0.17306749522686005,
1673
+ "learning_rate": 4.3933982822017876e-05,
1674
+ "loss": 1.4435,
1675
+ "step": 238
1676
+ },
1677
+ {
1678
+ "epoch": 0.7641886490807354,
1679
+ "grad_norm": 0.20918579399585724,
1680
+ "learning_rate": 4.2814247390321215e-05,
1681
+ "loss": 1.2357,
1682
+ "step": 239
1683
+ },
1684
+ {
1685
+ "epoch": 0.7673860911270983,
1686
+ "grad_norm": 0.21173876523971558,
1687
+ "learning_rate": 4.1706585906821334e-05,
1688
+ "loss": 1.2602,
1689
+ "step": 240
1690
+ },
1691
+ {
1692
+ "epoch": 0.7705835331734612,
1693
+ "grad_norm": 0.19886651635169983,
1694
+ "learning_rate": 4.0611123144140075e-05,
1695
+ "loss": 1.4166,
1696
+ "step": 241
1697
+ },
1698
+ {
1699
+ "epoch": 0.7737809752198241,
1700
+ "grad_norm": 0.19375504553318024,
1701
+ "learning_rate": 3.952798250077317e-05,
1702
+ "loss": 1.3777,
1703
+ "step": 242
1704
+ },
1705
+ {
1706
+ "epoch": 0.7769784172661871,
1707
+ "grad_norm": 0.20145930349826813,
1708
+ "learning_rate": 3.84572859871904e-05,
1709
+ "loss": 1.3258,
1710
+ "step": 243
1711
+ },
1712
+ {
1713
+ "epoch": 0.78017585931255,
1714
+ "grad_norm": 0.2076532244682312,
1715
+ "learning_rate": 3.739915421209133e-05,
1716
+ "loss": 1.3921,
1717
+ "step": 244
1718
+ },
1719
+ {
1720
+ "epoch": 0.7833733013589129,
1721
+ "grad_norm": 0.19265635311603546,
1722
+ "learning_rate": 3.635370636881958e-05,
1723
+ "loss": 1.4043,
1724
+ "step": 245
1725
+ },
1726
+ {
1727
+ "epoch": 0.7865707434052758,
1728
+ "grad_norm": 0.19883492588996887,
1729
+ "learning_rate": 3.532106022193615e-05,
1730
+ "loss": 1.346,
1731
+ "step": 246
1732
+ },
1733
+ {
1734
+ "epoch": 0.7897681854516387,
1735
+ "grad_norm": 0.18948738276958466,
1736
+ "learning_rate": 3.4301332093953807e-05,
1737
+ "loss": 1.4363,
1738
+ "step": 247
1739
+ },
1740
+ {
1741
+ "epoch": 0.7929656274980016,
1742
+ "grad_norm": 0.18976429104804993,
1743
+ "learning_rate": 3.3294636852234105e-05,
1744
+ "loss": 1.4316,
1745
+ "step": 248
1746
+ },
1747
+ {
1748
+ "epoch": 0.7961630695443646,
1749
+ "grad_norm": 0.202013298869133,
1750
+ "learning_rate": 3.230108789604792e-05,
1751
+ "loss": 1.4532,
1752
+ "step": 249
1753
+ },
1754
+ {
1755
+ "epoch": 0.7993605115907274,
1756
+ "grad_norm": 0.2116522341966629,
1757
+ "learning_rate": 3.132079714380171e-05,
1758
+ "loss": 1.5129,
1759
+ "step": 250
1760
+ },
1761
+ {
1762
+ "epoch": 0.8025579536370904,
1763
+ "grad_norm": 0.19418169558048248,
1764
+ "learning_rate": 3.035387502043052e-05,
1765
+ "loss": 1.3265,
1766
+ "step": 251
1767
+ },
1768
+ {
1769
+ "epoch": 0.8057553956834532,
1770
+ "grad_norm": 0.21084119379520416,
1771
+ "learning_rate": 2.9400430444958932e-05,
1772
+ "loss": 1.3929,
1773
+ "step": 252
1774
+ },
1775
+ {
1776
+ "epoch": 0.8089528377298162,
1777
+ "grad_norm": 0.23588140308856964,
1778
+ "learning_rate": 2.846057081823201e-05,
1779
+ "loss": 1.2077,
1780
+ "step": 253
1781
+ },
1782
+ {
1783
+ "epoch": 0.812150279776179,
1784
+ "grad_norm": 0.21185244619846344,
1785
+ "learning_rate": 2.7534402010817157e-05,
1786
+ "loss": 1.2874,
1787
+ "step": 254
1788
+ },
1789
+ {
1790
+ "epoch": 0.815347721822542,
1791
+ "grad_norm": 0.184846431016922,
1792
+ "learning_rate": 2.6622028351078277e-05,
1793
+ "loss": 1.4785,
1794
+ "step": 255
1795
+ },
1796
+ {
1797
+ "epoch": 0.8185451638689049,
1798
+ "grad_norm": 0.1995445042848587,
1799
+ "learning_rate": 2.5723552613423687e-05,
1800
+ "loss": 1.4153,
1801
+ "step": 256
1802
+ },
1803
+ {
1804
+ "epoch": 0.8217426059152678,
1805
+ "grad_norm": 0.20493745803833008,
1806
+ "learning_rate": 2.4839076006729082e-05,
1807
+ "loss": 1.448,
1808
+ "step": 257
1809
+ },
1810
+ {
1811
+ "epoch": 0.8249400479616307,
1812
+ "grad_norm": 0.1989341676235199,
1813
+ "learning_rate": 2.3968698162936854e-05,
1814
+ "loss": 1.4733,
1815
+ "step": 258
1816
+ },
1817
+ {
1818
+ "epoch": 0.8281374900079936,
1819
+ "grad_norm": 0.20579148828983307,
1820
+ "learning_rate": 2.311251712583307e-05,
1821
+ "loss": 1.4746,
1822
+ "step": 259
1823
+ },
1824
+ {
1825
+ "epoch": 0.8313349320543565,
1826
+ "grad_norm": 0.2025279700756073,
1827
+ "learning_rate": 2.2270629340003303e-05,
1828
+ "loss": 1.6248,
1829
+ "step": 260
1830
+ },
1831
+ {
1832
+ "epoch": 0.8345323741007195,
1833
+ "grad_norm": 0.17980627715587616,
1834
+ "learning_rate": 2.1443129639968615e-05,
1835
+ "loss": 1.3753,
1836
+ "step": 261
1837
+ },
1838
+ {
1839
+ "epoch": 0.8377298161470823,
1840
+ "grad_norm": 0.21116185188293457,
1841
+ "learning_rate": 2.063011123950295e-05,
1842
+ "loss": 1.2975,
1843
+ "step": 262
1844
+ },
1845
+ {
1846
+ "epoch": 0.8409272581934453,
1847
+ "grad_norm": 0.20071591436862946,
1848
+ "learning_rate": 1.9831665721132954e-05,
1849
+ "loss": 1.444,
1850
+ "step": 263
1851
+ },
1852
+ {
1853
+ "epoch": 0.8441247002398081,
1854
+ "grad_norm": 0.19569140672683716,
1855
+ "learning_rate": 1.9047883025821774e-05,
1856
+ "loss": 1.5126,
1857
+ "step": 264
1858
+ },
1859
+ {
1860
+ "epoch": 0.8473221422861711,
1861
+ "grad_norm": 0.19419822096824646,
1862
+ "learning_rate": 1.827885144283769e-05,
1863
+ "loss": 1.3867,
1864
+ "step": 265
1865
+ },
1866
+ {
1867
+ "epoch": 0.8505195843325339,
1868
+ "grad_norm": 0.19556277990341187,
1869
+ "learning_rate": 1.75246575998086e-05,
1870
+ "loss": 1.3758,
1871
+ "step": 266
1872
+ },
1873
+ {
1874
+ "epoch": 0.8537170263788969,
1875
+ "grad_norm": 0.20848549902439117,
1876
+ "learning_rate": 1.678538645296391e-05,
1877
+ "loss": 1.4835,
1878
+ "step": 267
1879
+ },
1880
+ {
1881
+ "epoch": 0.8569144684252598,
1882
+ "grad_norm": 0.19634144008159637,
1883
+ "learning_rate": 1.6061121277564743e-05,
1884
+ "loss": 1.4624,
1885
+ "step": 268
1886
+ },
1887
+ {
1888
+ "epoch": 0.8601119104716227,
1889
+ "grad_norm": 0.19600766897201538,
1890
+ "learning_rate": 1.535194365852315e-05,
1891
+ "loss": 1.2323,
1892
+ "step": 269
1893
+ },
1894
+ {
1895
+ "epoch": 0.8633093525179856,
1896
+ "grad_norm": 0.21323877573013306,
1897
+ "learning_rate": 1.4657933481212242e-05,
1898
+ "loss": 1.5224,
1899
+ "step": 270
1900
+ },
1901
+ {
1902
+ "epoch": 0.8665067945643485,
1903
+ "grad_norm": 0.18555647134780884,
1904
+ "learning_rate": 1.3979168922467298e-05,
1905
+ "loss": 1.3663,
1906
+ "step": 271
1907
+ },
1908
+ {
1909
+ "epoch": 0.8697042366107114,
1910
+ "grad_norm": 0.19477520883083344,
1911
+ "learning_rate": 1.3315726441779629e-05,
1912
+ "loss": 1.4892,
1913
+ "step": 272
1914
+ },
1915
+ {
1916
+ "epoch": 0.8729016786570744,
1917
+ "grad_norm": 0.19639001786708832,
1918
+ "learning_rate": 1.2667680772683825e-05,
1919
+ "loss": 1.2377,
1920
+ "step": 273
1921
+ },
1922
+ {
1923
+ "epoch": 0.8760991207034372,
1924
+ "grad_norm": 0.21710480749607086,
1925
+ "learning_rate": 1.2035104914339188e-05,
1926
+ "loss": 1.3991,
1927
+ "step": 274
1928
+ },
1929
+ {
1930
+ "epoch": 0.8792965627498002,
1931
+ "grad_norm": 0.21137666702270508,
1932
+ "learning_rate": 1.1418070123306989e-05,
1933
+ "loss": 1.5307,
1934
+ "step": 275
1935
+ },
1936
+ {
1937
+ "epoch": 0.882494004796163,
1938
+ "grad_norm": 0.19870568811893463,
1939
+ "learning_rate": 1.0816645905523597e-05,
1940
+ "loss": 1.341,
1941
+ "step": 276
1942
+ },
1943
+ {
1944
+ "epoch": 0.885691446842526,
1945
+ "grad_norm": 0.2340983897447586,
1946
+ "learning_rate": 1.0230900008471072e-05,
1947
+ "loss": 1.3578,
1948
+ "step": 277
1949
+ },
1950
+ {
1951
+ "epoch": 0.8888888888888888,
1952
+ "grad_norm": 0.18889744579792023,
1953
+ "learning_rate": 9.660898413545692e-06,
1954
+ "loss": 1.4085,
1955
+ "step": 278
1956
+ },
1957
+ {
1958
+ "epoch": 0.8920863309352518,
1959
+ "grad_norm": 0.213284432888031,
1960
+ "learning_rate": 9.106705328625408e-06,
1961
+ "loss": 1.3843,
1962
+ "step": 279
1963
+ },
1964
+ {
1965
+ "epoch": 0.8952837729816147,
1966
+ "grad_norm": 0.2060411274433136,
1967
+ "learning_rate": 8.568383180837368e-06,
1968
+ "loss": 1.473,
1969
+ "step": 280
1970
+ },
1971
+ {
1972
+ "epoch": 0.8984812150279776,
1973
+ "grad_norm": 0.18018406629562378,
1974
+ "learning_rate": 8.04599260952557e-06,
1975
+ "loss": 1.3782,
1976
+ "step": 281
1977
+ },
1978
+ {
1979
+ "epoch": 0.9016786570743405,
1980
+ "grad_norm": 0.18678754568099976,
1981
+ "learning_rate": 7.539592459420219e-06,
1982
+ "loss": 1.4252,
1983
+ "step": 282
1984
+ },
1985
+ {
1986
+ "epoch": 0.9048760991207034,
1987
+ "grad_norm": 0.2027515172958374,
1988
+ "learning_rate": 7.049239774009213e-06,
1989
+ "loss": 1.3717,
1990
+ "step": 283
1991
+ },
1992
+ {
1993
+ "epoch": 0.9080735411670664,
1994
+ "grad_norm": 0.20960167050361633,
1995
+ "learning_rate": 6.574989789112372e-06,
1996
+ "loss": 1.2815,
1997
+ "step": 284
1998
+ },
1999
+ {
2000
+ "epoch": 0.9112709832134293,
2001
+ "grad_norm": 0.19627049565315247,
2002
+ "learning_rate": 6.11689592665951e-06,
2003
+ "loss": 1.4348,
2004
+ "step": 285
2005
+ },
2006
+ {
2007
+ "epoch": 0.9144684252597922,
2008
+ "grad_norm": 0.20119017362594604,
2009
+ "learning_rate": 5.675009788672596e-06,
2010
+ "loss": 1.3343,
2011
+ "step": 286
2012
+ },
2013
+ {
2014
+ "epoch": 0.9176658673061551,
2015
+ "grad_norm": 0.18706481158733368,
2016
+ "learning_rate": 5.2493811514531635e-06,
2017
+ "loss": 1.3721,
2018
+ "step": 287
2019
+ },
2020
+ {
2021
+ "epoch": 0.920863309352518,
2022
+ "grad_norm": 0.19794286787509918,
2023
+ "learning_rate": 4.840057959975169e-06,
2024
+ "loss": 1.3626,
2025
+ "step": 288
2026
+ },
2027
+ {
2028
+ "epoch": 0.9240607513988809,
2029
+ "grad_norm": 0.1808895319700241,
2030
+ "learning_rate": 4.44708632248425e-06,
2031
+ "loss": 1.5342,
2032
+ "step": 289
2033
+ },
2034
+ {
2035
+ "epoch": 0.9272581934452439,
2036
+ "grad_norm": 0.1820111721754074,
2037
+ "learning_rate": 4.070510505303814e-06,
2038
+ "loss": 1.4357,
2039
+ "step": 290
2040
+ },
2041
+ {
2042
+ "epoch": 0.9304556354916067,
2043
+ "grad_norm": 0.1756613701581955,
2044
+ "learning_rate": 3.710372927848776e-06,
2045
+ "loss": 1.328,
2046
+ "step": 291
2047
+ },
2048
+ {
2049
+ "epoch": 0.9336530775379697,
2050
+ "grad_norm": 0.19259536266326904,
2051
+ "learning_rate": 3.366714157847078e-06,
2052
+ "loss": 1.2882,
2053
+ "step": 292
2054
+ },
2055
+ {
2056
+ "epoch": 0.9368505195843325,
2057
+ "grad_norm": 0.20220039784908295,
2058
+ "learning_rate": 3.0395729067700324e-06,
2059
+ "loss": 1.3903,
2060
+ "step": 293
2061
+ },
2062
+ {
2063
+ "epoch": 0.9400479616306955,
2064
+ "grad_norm": 0.1991778463125229,
2065
+ "learning_rate": 2.728986025471641e-06,
2066
+ "loss": 1.3649,
2067
+ "step": 294
2068
+ },
2069
+ {
2070
+ "epoch": 0.9432454036770583,
2071
+ "grad_norm": 0.20098921656608582,
2072
+ "learning_rate": 2.4349885000374657e-06,
2073
+ "loss": 1.4128,
2074
+ "step": 295
2075
+ },
2076
+ {
2077
+ "epoch": 0.9464428457234213,
2078
+ "grad_norm": 0.18276216089725494,
2079
+ "learning_rate": 2.1576134478437313e-06,
2080
+ "loss": 1.3548,
2081
+ "step": 296
2082
+ },
2083
+ {
2084
+ "epoch": 0.9496402877697842,
2085
+ "grad_norm": 0.21758389472961426,
2086
+ "learning_rate": 1.8968921138267091e-06,
2087
+ "loss": 1.4765,
2088
+ "step": 297
2089
+ },
2090
+ {
2091
+ "epoch": 0.9528377298161471,
2092
+ "grad_norm": 0.18690507113933563,
2093
+ "learning_rate": 1.6528538669631997e-06,
2094
+ "loss": 1.5375,
2095
+ "step": 298
2096
+ },
2097
+ {
2098
+ "epoch": 0.95603517186251,
2099
+ "grad_norm": 0.1706872582435608,
2100
+ "learning_rate": 1.4255261969622456e-06,
2101
+ "loss": 1.2775,
2102
+ "step": 299
2103
+ },
2104
+ {
2105
+ "epoch": 0.9592326139088729,
2106
+ "grad_norm": 0.2452152669429779,
2107
+ "learning_rate": 1.2149347111684749e-06,
2108
+ "loss": 1.2828,
2109
+ "step": 300
2110
+ },
2111
+ {
2112
+ "epoch": 0.9624300559552358,
2113
+ "grad_norm": 0.17894317209720612,
2114
+ "learning_rate": 1.0211031316776919e-06,
2115
+ "loss": 1.4131,
2116
+ "step": 301
2117
+ },
2118
+ {
2119
+ "epoch": 0.9656274980015987,
2120
+ "grad_norm": 0.21982480585575104,
2121
+ "learning_rate": 8.440532926646315e-07,
2122
+ "loss": 1.3501,
2123
+ "step": 302
2124
+ },
2125
+ {
2126
+ "epoch": 0.9688249400479616,
2127
+ "grad_norm": 0.19508808851242065,
2128
+ "learning_rate": 6.838051379234099e-07,
2129
+ "loss": 1.3474,
2130
+ "step": 303
2131
+ },
2132
+ {
2133
+ "epoch": 0.9720223820943246,
2134
+ "grad_norm": 0.1852046549320221,
2135
+ "learning_rate": 5.403767186210218e-07,
2136
+ "loss": 1.3791,
2137
+ "step": 304
2138
+ },
2139
+ {
2140
+ "epoch": 0.9752198241406874,
2141
+ "grad_norm": 0.18738119304180145,
2142
+ "learning_rate": 4.137841912639328e-07,
2143
+ "loss": 1.4893,
2144
+ "step": 305
2145
+ },
2146
+ {
2147
+ "epoch": 0.9784172661870504,
2148
+ "grad_norm": 0.20034608244895935,
2149
+ "learning_rate": 3.0404181587811994e-07,
2150
+ "loss": 1.4388,
2151
+ "step": 306
2152
+ },
2153
+ {
2154
+ "epoch": 0.9816147082334132,
2155
+ "grad_norm": 0.20295751094818115,
2156
+ "learning_rate": 2.1116195440278872e-07,
2157
+ "loss": 1.4804,
2158
+ "step": 307
2159
+ },
2160
+ {
2161
+ "epoch": 0.9848121502797762,
2162
+ "grad_norm": 0.207365021109581,
2163
+ "learning_rate": 1.3515506929778762e-07,
2164
+ "loss": 1.4719,
2165
+ "step": 308
2166
+ },
2167
+ {
2168
+ "epoch": 0.988009592326139,
2169
+ "grad_norm": 0.2223723828792572,
2170
+ "learning_rate": 7.602972236513405e-08,
2171
+ "loss": 1.3123,
2172
+ "step": 309
2173
+ },
2174
+ {
2175
+ "epoch": 0.991207034372502,
2176
+ "grad_norm": 0.2046136111021042,
2177
+ "learning_rate": 3.3792573784585665e-08,
2178
+ "loss": 1.4272,
2179
+ "step": 310
2180
+ },
2181
+ {
2182
+ "epoch": 0.9944044764188649,
2183
+ "grad_norm": 0.21449051797389984,
2184
+ "learning_rate": 8.448381363307388e-09,
2185
+ "loss": 1.3367,
2186
+ "step": 311
2187
+ },
2188
+ {
2189
+ "epoch": 0.9976019184652278,
2190
+ "grad_norm": 0.21067871153354645,
2191
+ "learning_rate": 0.0,
2192
+ "loss": 1.4037,
2193
+ "step": 312
2194
+ }
2195
+ ],
2196
+ "logging_steps": 1,
2197
+ "max_steps": 312,
2198
+ "num_input_tokens_seen": 0,
2199
+ "num_train_epochs": 1,
2200
+ "save_steps": 100,
2201
+ "stateful_callbacks": {
2202
+ "TrainerControl": {
2203
+ "args": {
2204
+ "should_epoch_stop": false,
2205
+ "should_evaluate": false,
2206
+ "should_log": false,
2207
+ "should_save": true,
2208
+ "should_training_stop": true
2209
+ },
2210
+ "attributes": {}
2211
+ }
2212
+ },
2213
+ "total_flos": 8.138882997433958e+17,
2214
+ "train_batch_size": 2,
2215
+ "trial_name": null,
2216
+ "trial_params": null
2217
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5255fb5000a9911e8726caac6542dd597b6b6ae1521f1ec8453f44e5ae1d3cb8
3
+ size 5752