File size: 6,955 Bytes
f761808
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import copy
import numpy as np
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim.lr_scheduler import CosineAnnealingLR

from agent.model import MLP, Critic
from agent.diffusion import Diffusion
from agent.vae import VAE
from agent.helpers import EMA


class DiPo(object):
    def __init__(self,
                 args,
                 state_dim,
                 action_space,
                 memory,
                 diffusion_memory,
                 device,
                 ):
        action_dim = np.prod(action_space.shape)

        self.policy_type = args.policy_type
        if self.policy_type == 'Diffusion':
            self.actor = Diffusion(state_dim=state_dim, action_dim=action_dim, noise_ratio=args.noise_ratio,
                                   beta_schedule=args.beta_schedule, n_timesteps=args.n_timesteps).to(device)
        elif self.policy_type == 'VAE':
            self.actor = VAE(state_dim=state_dim, action_dim=action_dim, device=device).to(device)
        else:
            self.actor = MLP(state_dim=state_dim, action_dim=action_dim).to(device)

        self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=args.diffusion_lr, eps=1e-5)

        self.memory = memory
        self.diffusion_memory = diffusion_memory
        self.action_gradient_steps = args.action_gradient_steps

        self.action_grad_norm = action_dim * args.ratio
        self.ac_grad_norm = args.ac_grad_norm

        self.step = 0
        self.tau = args.tau
        self.actor_target = copy.deepcopy(self.actor)
        self.update_actor_target_every = args.update_actor_target_every

        self.critic = Critic(state_dim, action_dim).to(device)
        self.critic_target = copy.deepcopy(self.critic)
        self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=args.critic_lr, eps=1e-5)

        self.action_dim = action_dim

        self.action_lr = args.action_lr

        self.device = device

        if action_space is None:
            self.action_scale = 1.
            self.action_bias = 0.
        else:
            self.action_scale = (action_space.high - action_space.low) / 2.
            self.action_bias = (action_space.high + action_space.low) / 2.

    def append_memory(self, state, action, reward, next_state, mask):
        action = (action - self.action_bias) / self.action_scale
        
        self.memory.append(state, action, reward, next_state, mask)
        self.diffusion_memory.append(state, action)

    def sample_action(self, state, eval=False):
        state = torch.FloatTensor(state.reshape(1, -1)).to(self.device)

        action = self.actor(state, eval).cpu().data.numpy().flatten()
        action = action.clip(-1, 1)
        action = action * self.action_scale + self.action_bias
        return action

    def action_gradient(self, batch_size, log_writer):
        states, best_actions, idxs = self.diffusion_memory.sample(batch_size)

        actions_optim = torch.optim.Adam([best_actions], lr=self.action_lr, eps=1e-5)


        for i in range(self.action_gradient_steps):
            best_actions.requires_grad_(True)
            q1, q2 = self.critic(states, best_actions)
            loss = -torch.min(q1, q2)

            actions_optim.zero_grad()

            loss.backward(torch.ones_like(loss))
            if self.action_grad_norm > 0:
                actions_grad_norms = nn.utils.clip_grad_norm_([best_actions], max_norm=self.action_grad_norm, norm_type=2)

            actions_optim.step()

            best_actions.requires_grad_(False)
            best_actions.clamp_(-1., 1.)

        # if self.step % 10 == 0:
        #     log_writer.add_scalar('Action Grad Norm', actions_grad_norms.max().item(), self.step)

        best_actions = best_actions.detach()

        self.diffusion_memory.replace(idxs, best_actions.cpu().numpy())

        return states, best_actions

    def train(self, iterations, batch_size=256, log_writer=None):
        for _ in range(iterations):
            # Sample replay buffer / batch
            states, actions, rewards, next_states, masks = self.memory.sample(batch_size)

            """ Q Training """
            current_q1, current_q2 = self.critic(states, actions)

            next_actions = self.actor_target(next_states, eval=False)
            target_q1, target_q2 = self.critic_target(next_states, next_actions)
            target_q = torch.min(target_q1, target_q2)

            target_q = (rewards + masks * target_q).detach()

            critic_loss = F.mse_loss(current_q1, target_q) + F.mse_loss(current_q2, target_q)

            self.critic_optimizer.zero_grad()
            critic_loss.backward()
            if self.ac_grad_norm > 0:
                critic_grad_norms = nn.utils.clip_grad_norm_(self.critic.parameters(), max_norm=self.ac_grad_norm, norm_type=2)
                # if self.step % 10 == 0:
                #     log_writer.add_scalar('Critic Grad Norm', critic_grad_norms.max().item(), self.step)
            self.critic_optimizer.step()

            """ Policy Training """
            states, best_actions = self.action_gradient(batch_size, log_writer)

            actor_loss = self.actor.loss(best_actions, states)

            self.actor_optimizer.zero_grad()
            actor_loss.backward()
            if self.ac_grad_norm > 0:
                actor_grad_norms = nn.utils.clip_grad_norm_(self.actor.parameters(), max_norm=self.ac_grad_norm, norm_type=2)
                # if self.step % 10 == 0:
                #     log_writer.add_scalar('Actor Grad Norm', actor_grad_norms.max().item(), self.step)
            self.actor_optimizer.step()

            """ Step Target network """
            for param, target_param in zip(self.critic.parameters(), self.critic_target.parameters()):
                target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)

            if self.step % self.update_actor_target_every == 0:
                for param, target_param in zip(self.actor.parameters(), self.actor_target.parameters()):
                    target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)

            self.step += 1

    def save_model(self, dir, id=None):
        if id is not None:
            torch.save(self.actor.state_dict(), f'{dir}/actor_{id}.pth')
            torch.save(self.critic.state_dict(), f'{dir}/critic_{id}.pth')
        else:
            torch.save(self.actor.state_dict(), f'{dir}/actor.pth')
            torch.save(self.critic.state_dict(), f'{dir}/critic.pth')

    def load_model(self, dir, id=None):
        if id is not None:
            self.actor.load_state_dict(torch.load(f'{dir}/actor_{id}.pth'))
            self.critic.load_state_dict(torch.load(f'{dir}/critic_{id}.pth'))
        else:
            self.actor.load_state_dict(torch.load(f'{dir}/actor.pth'))
            self.critic.load_state_dict(torch.load(f'{dir}/critic.pth'))