File size: 6,720 Bytes
f761808 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import copy
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from agent.helpers import (cosine_beta_schedule,
linear_beta_schedule,
vp_beta_schedule,
extract,
Losses)
from agent.model import Model
class Diffusion(nn.Module):
def __init__(self, state_dim, action_dim, noise_ratio,
beta_schedule='vp', n_timesteps=1000,
loss_type='l2', clip_denoised=True, predict_epsilon=True):
super(Diffusion, self).__init__()
self.state_dim = state_dim
self.action_dim = action_dim
self.model = Model(state_dim, action_dim)
self.max_noise_ratio = noise_ratio
self.noise_ratio = noise_ratio
if beta_schedule == 'linear':
betas = linear_beta_schedule(n_timesteps)
elif beta_schedule == 'cosine':
betas = cosine_beta_schedule(n_timesteps)
elif beta_schedule == 'vp':
betas = vp_beta_schedule(n_timesteps)
alphas = 1. - betas
alphas_cumprod = torch.cumprod(alphas, axis=0)
alphas_cumprod_prev = torch.cat([torch.ones(1), alphas_cumprod[:-1]])
self.n_timesteps = int(n_timesteps)
self.clip_denoised = clip_denoised
self.predict_epsilon = predict_epsilon
self.register_buffer('betas', betas)
self.register_buffer('alphas_cumprod', alphas_cumprod)
self.register_buffer('alphas_cumprod_prev', alphas_cumprod_prev)
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer('sqrt_alphas_cumprod', torch.sqrt(alphas_cumprod))
self.register_buffer('sqrt_one_minus_alphas_cumprod', torch.sqrt(1. - alphas_cumprod))
self.register_buffer('log_one_minus_alphas_cumprod', torch.log(1. - alphas_cumprod))
self.register_buffer('sqrt_recip_alphas_cumprod', torch.sqrt(1. / alphas_cumprod))
self.register_buffer('sqrt_recipm1_alphas_cumprod', torch.sqrt(1. / alphas_cumprod - 1))
# calculations for posterior q(x_{t-1} | x_t, x_0)
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
self.register_buffer('posterior_variance', posterior_variance)
## log calculation clipped because the posterior variance
## is 0 at the beginning of the diffusion chain
self.register_buffer('posterior_log_variance_clipped',
torch.log(torch.clamp(posterior_variance, min=1e-20)))
self.register_buffer('posterior_mean_coef1',
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))
self.register_buffer('posterior_mean_coef2',
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod))
self.loss_fn = Losses[loss_type]()
# ------------------------------------------ sampling ------------------------------------------#
def predict_start_from_noise(self, x_t, t, noise):
'''
if self.predict_epsilon, model output is (scaled) noise;
otherwise, model predicts x0 directly
'''
if self.predict_epsilon:
return (
extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
)
else:
return noise
def q_posterior(self, x_start, x_t, t):
posterior_mean = (
extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
)
posterior_variance = extract(self.posterior_variance, t, x_t.shape)
posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
return posterior_mean, posterior_variance, posterior_log_variance_clipped
def p_mean_variance(self, x, t, s):
x_recon = self.predict_start_from_noise(x, t=t, noise=self.model(x, t, s))
if self.clip_denoised:
x_recon.clamp_(-1., 1.)
else:
assert RuntimeError()
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
return model_mean, posterior_variance, posterior_log_variance
@torch.no_grad()
def p_sample(self, x, t, s):
b, *_, device = *x.shape, x.device
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, s=s)
noise = torch.randn_like(x)
# no noise when t == 0
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise * self.noise_ratio
@torch.no_grad()
def p_sample_loop(self, state, shape):
device = self.betas.device
batch_size = shape[0]
x = torch.randn(shape, device=device)
for i in reversed(range(0, self.n_timesteps)):
timesteps = torch.full((batch_size,), i, device=device, dtype=torch.long)
x = self.p_sample(x, timesteps, state)
return x
@torch.no_grad()
def sample(self, state, eval=False):
self.noise_ratio = 0 if eval else self.max_noise_ratio
batch_size = state.shape[0]
shape = (batch_size, self.action_dim)
action = self.p_sample_loop(state, shape)
return action.clamp_(-1., 1.)
# ------------------------------------------ training ------------------------------------------#
def q_sample(self, x_start, t, noise=None):
if noise is None:
noise = torch.randn_like(x_start)
sample = (
extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
)
return sample
def p_losses(self, x_start, state, t, weights=1.0):
noise = torch.randn_like(x_start)
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
x_recon = self.model(x_noisy, t, state)
assert noise.shape == x_recon.shape
if self.predict_epsilon:
loss = self.loss_fn(x_recon, noise, weights)
else:
loss = self.loss_fn(x_recon, x_start, weights)
return loss
def loss(self, x, state, weights=1.0):
batch_size = len(x)
t = torch.randint(0, self.n_timesteps, (batch_size,), device=x.device).long()
return self.p_losses(x, state, t, weights)
def forward(self, state, eval=False):
return self.sample(state, eval)
|