File size: 6,720 Bytes
f761808
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import copy
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F


from agent.helpers import (cosine_beta_schedule,
                            linear_beta_schedule,
                            vp_beta_schedule,
                            extract,
                            Losses)

from agent.model import Model


class Diffusion(nn.Module):
    def __init__(self, state_dim, action_dim, noise_ratio,
                 beta_schedule='vp', n_timesteps=1000,
                 loss_type='l2', clip_denoised=True, predict_epsilon=True):
        super(Diffusion, self).__init__()

        self.state_dim = state_dim
        self.action_dim = action_dim
        self.model = Model(state_dim, action_dim)

        self.max_noise_ratio = noise_ratio
        self.noise_ratio = noise_ratio

        if beta_schedule == 'linear':
            betas = linear_beta_schedule(n_timesteps)
        elif beta_schedule == 'cosine':
            betas = cosine_beta_schedule(n_timesteps)
        elif beta_schedule == 'vp':
            betas = vp_beta_schedule(n_timesteps)

        alphas = 1. - betas
        alphas_cumprod = torch.cumprod(alphas, axis=0)
        alphas_cumprod_prev = torch.cat([torch.ones(1), alphas_cumprod[:-1]])

        self.n_timesteps = int(n_timesteps)
        self.clip_denoised = clip_denoised
        self.predict_epsilon = predict_epsilon

        self.register_buffer('betas', betas)
        self.register_buffer('alphas_cumprod', alphas_cumprod)
        self.register_buffer('alphas_cumprod_prev', alphas_cumprod_prev)

        # calculations for diffusion q(x_t | x_{t-1}) and others
        self.register_buffer('sqrt_alphas_cumprod', torch.sqrt(alphas_cumprod))
        self.register_buffer('sqrt_one_minus_alphas_cumprod', torch.sqrt(1. - alphas_cumprod))
        self.register_buffer('log_one_minus_alphas_cumprod', torch.log(1. - alphas_cumprod))
        self.register_buffer('sqrt_recip_alphas_cumprod', torch.sqrt(1. / alphas_cumprod))
        self.register_buffer('sqrt_recipm1_alphas_cumprod', torch.sqrt(1. / alphas_cumprod - 1))

        # calculations for posterior q(x_{t-1} | x_t, x_0)
        posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
        self.register_buffer('posterior_variance', posterior_variance)

        ## log calculation clipped because the posterior variance
        ## is 0 at the beginning of the diffusion chain
        self.register_buffer('posterior_log_variance_clipped',
                             torch.log(torch.clamp(posterior_variance, min=1e-20)))
        self.register_buffer('posterior_mean_coef1',
                             betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))
        self.register_buffer('posterior_mean_coef2',
                             (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod))

        self.loss_fn = Losses[loss_type]()

    # ------------------------------------------ sampling ------------------------------------------#

    def predict_start_from_noise(self, x_t, t, noise):
        '''
            if self.predict_epsilon, model output is (scaled) noise;
            otherwise, model predicts x0 directly
        '''
        if self.predict_epsilon:
            return (
                    extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
                    extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
            )
        else:
            return noise

    def q_posterior(self, x_start, x_t, t):
        posterior_mean = (
                extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
                extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
        )
        posterior_variance = extract(self.posterior_variance, t, x_t.shape)
        posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
        return posterior_mean, posterior_variance, posterior_log_variance_clipped

    def p_mean_variance(self, x, t, s):
        x_recon = self.predict_start_from_noise(x, t=t, noise=self.model(x, t, s))

        if self.clip_denoised:
            x_recon.clamp_(-1., 1.)
        else:
            assert RuntimeError()

        model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
        return model_mean, posterior_variance, posterior_log_variance

    @torch.no_grad()
    def p_sample(self, x, t, s):
        b, *_, device = *x.shape, x.device

        model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, s=s)

        noise = torch.randn_like(x)
        # no noise when t == 0
        nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))

        return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise * self.noise_ratio


    @torch.no_grad()
    def p_sample_loop(self, state, shape):
        device = self.betas.device

        batch_size = shape[0]
        x = torch.randn(shape, device=device)

        for i in reversed(range(0, self.n_timesteps)):
            timesteps = torch.full((batch_size,), i, device=device, dtype=torch.long)
            x = self.p_sample(x, timesteps, state)

        return x

    @torch.no_grad()
    def sample(self, state, eval=False):
        self.noise_ratio = 0 if eval else self.max_noise_ratio
        
        batch_size = state.shape[0]
        shape = (batch_size, self.action_dim)
        action = self.p_sample_loop(state, shape)
        return action.clamp_(-1., 1.)

    # ------------------------------------------ training ------------------------------------------#

    def q_sample(self, x_start, t, noise=None):
        if noise is None:
            noise = torch.randn_like(x_start)

        sample = (
                extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
                extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
        )

        return sample

    def p_losses(self, x_start, state, t, weights=1.0):
        noise = torch.randn_like(x_start)

        x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)

        x_recon = self.model(x_noisy, t, state)

        assert noise.shape == x_recon.shape

        if self.predict_epsilon:
            loss = self.loss_fn(x_recon, noise, weights)
        else:
            loss = self.loss_fn(x_recon, x_start, weights)

        return loss


    def loss(self, x, state, weights=1.0):
        batch_size = len(x)
        t = torch.randint(0, self.n_timesteps, (batch_size,), device=x.device).long()
        return self.p_losses(x, state, t, weights)

    def forward(self, state, eval=False):
        return self.sample(state, eval)