XGenerationLab commited on
Commit
8f77292
·
verified ·
1 Parent(s): 821af3f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +103 -3
README.md CHANGED
@@ -1,3 +1,103 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+ ### Important Links
5
+
6
+ 🤖[Github](https://github.com/XGenerationLab/XiYanSQL-QwenCoder) |
7
+ 🤗[ModelScope](https://modelscope.cn/collections/XiYanSQL-Models-4483337b614241) |
8
+ 📖[XiYan-SQL](https://github.com/XGenerationLab/XiYan-SQL) |
9
+ 🌕[析言GBI](https://bailian.console.aliyun.com/xiyan) |
10
+ 🌞[Modelscope Space](https://www.modelscope.cn/studios/XGenerationLab/XiYanSQL-QwenCoder-32B)
11
+
12
+
13
+ ## Introduction
14
+ We are excited to open source the XiYanSQL-QwenCoder series model, dedicated to advancing the development of LLMs in the text-to-SQL domain. As of now, XiYanSQL-QwenCoder covers four mainstream model sizes: 3B, 7B, 14B, and 32B parameters, to meet the needs of different developers.
15
+ - The XiYanSQL-QwenCoder model demonstrates strong performance in SQL generation, with the XiYanSQL-QwenCoder-32B achieving a 69.03% EX score on the BIRD TEST set, setting a new SOTA with a single fine-tuned model. Other models in the series also maintain a leading position at their respective sizes.
16
+ - The XiYanSQL-QwenCoder model supports multiple SQL dialects, such as SQLite, PostgreSQL, and MySQL.
17
+ - The XiYanSQL-QwenCoder model can be used directly for text-to-SQL tasks or serve as a better starting point for fine-tuning SQL models.
18
+
19
+
20
+ ## Model Downloads
21
+
22
+
23
+ | **Model** | **Download Latest** |
24
+ |-----------|------------------|
25
+ |XiYanSQL-QwenCoder-3B |💻[HuggingFace](https://huggingface.co/XGenerationLab/XiYanSQL-QwenCoder-3B-2502) 🤗[Modelscope](https://www.modelscope.cn/models/XGenerationLab/XiYanSQL-QwenCoder-3B-2502)|
26
+ |XiYanSQL-QwenCoder-7B |💻[HuggingFace](https://huggingface.co/XGenerationLab/XiYanSQL-QwenCoder-7B-2502) 🤗[Modelscope](https://www.modelscope.cn/models/XGenerationLab/XiYanSQL-QwenCoder-7B-2502)|
27
+ |XiYanSQL-QwenCoder-14B |💻[HuggingFace](https://huggingface.co/XGenerationLab/XiYanSQL-QwenCoder-14B-2502) 🤗[Modelscope](https://www.modelscope.cn/models/XGenerationLab/XiYanSQL-QwenCoder-14B-2502)|
28
+ |XiYanSQL-QwenCoder-32B |💻[HuggingFace](https://huggingface.co/XGenerationLab/XiYanSQL-QwenCoder-32B-2412) 🤗[Modelscope](https://www.modelscope.cn/models/XGenerationLab/XiYanSQL-QwenCoder-32B-2412)|
29
+
30
+
31
+
32
+ ## Performance
33
+ The XiYanSQL-QwenCoder models, as multi-dialect SQL base models, demonstrating robust SQL generation capabilities. The following presents the evaluation results at the time of release. We conducted a comprehensive evaluation of the model's performance under two schema formats, M-Schema, and original DDL, using the BIRD and Spider benchmarks in the Text-to-SQL domain.
34
+
35
+ | Model name|BIRD Dev@M-Schema |BIRD Dev@DDL|Spider Test@M-Schema|Spider Test@DDL|
36
+ |-----------|:------------------:|:---------------:|:-------------------:|:---------------:|
37
+ |Codellama-34b | 33.05% | - | 67.74% | - |
38
+ |Deepseek-coder-33b | 47.52% | 44.72% | 72.39% | - |
39
+ |TableGPT2 | 46.35% | 47.07% | 74.76% | 77.28% |
40
+ |Codestral 22b | 50.52% | 47.00% | 78.45% | 75.47% |
41
+ |GLM-4-plus | 54.37% | - | 79.40% | - |
42
+ |Claude35_sonnet-1022 | 53.32% | 50.46% | 76.27% | 73.04% |
43
+ |Deepseek(v2.5-1210) | 55.74% | 55.61% | 82.08% | 80.57% |
44
+ |Gemini-1.5-pro | 61.34% | 57.89% | 85.11% | 84.00% |
45
+ |GPT-4o-0806 | 58.47% | 54.82% | 82.89% | 78.45% |
46
+ |XiYanSQL-QwenCoder-3B | 54.11% | 53.19% | 82.69% | 78.85% |
47
+ |XiYanSQL-QwenCoder-7B | 59.78% | 56.58% | 84.86% | 80.31% |
48
+ |XiYanSQL-QwenCoder-14B | 63.10% | 60.37% | 85.76% | 82.79% |
49
+ |XiYanSQL-QwenCoder-32B | 67.01% | 63.04% | 88.39% | 85.46% |
50
+ ## Requirements
51
+ transformers >= 4.37.0
52
+ ## Quickstart
53
+ Here is a simple code snippet for quickly using **XiYanSQL-QwenCoder** model. We provide a Chinese version of the prompt, and you just need to replace the placeholders for "question," "db_schema," and "evidence" to get started. We recommend using our [M-Schema](https://github.com/XGenerationLab/M-Schema) format for the schema; other formats such as DDL are also acceptable, but they may affect performance.
54
+ Currently, we mainly support mainstream dialects like SQLite, PostgreSQL, and MySQL.
55
+
56
+ ```
57
+ nl2sqlite_template_cn = """你是一名{dialect}专家,现在需要阅读并理解下面的【数据库schema】描述,以及可能用到的【参考信息】,并运用{dialect}知识生成sql语句回答【用户问题】。
58
+ 【用户问题】
59
+ {question}
60
+ 【数据库schema】
61
+ {db_schema}
62
+ 【参考信息】
63
+ {evidence}
64
+ 【用户问题】
65
+ {question}
66
+ ```sql"""
67
+
68
+ import torch
69
+ from transformers import AutoModelForCausalLM, AutoTokenizer
70
+
71
+ model_name = "XGenerationLab/XiYanSQL-QwenCoder-32B-2412"
72
+ model = AutoModelForCausalLM.from_pretrained(
73
+ model_name,
74
+ torch_dtype=torch.bfloat16,
75
+ device_map="auto"
76
+ )
77
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
78
+
79
+ ## dialects -> ['SQLite', 'PostgreSQL', 'MySQL']
80
+ prompt = nl2sqlite_template_cn.format(dialect="", db_schema="", question="", evidence="")
81
+ message = [{'role': 'user', 'content': prompt}]
82
+ text = tokenizer.apply_chat_template(
83
+ message,
84
+ tokenize=False,
85
+ add_generation_prompt=True
86
+ )
87
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
88
+ generated_ids = model.generate(
89
+ **model_inputs,
90
+ pad_token_id=tokenizer.pad_token_id,
91
+ eos_token_id=tokenizer.eos_token_id,
92
+ max_new_tokens=1024,
93
+ temperature=0.1,
94
+ top_p=0.8,
95
+ do_sample=True,
96
+ )
97
+ generated_ids = [
98
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
99
+ ]
100
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
101
+ ```
102
+ ## Acknowledgments
103
+ If you find our work useful, please give us a citation or a like, so we can make a greater contribution to the open-source community!