First commit
Browse files
README.md
CHANGED
@@ -1,146 +1,3 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
- Pytorch
|
4 |
-
license: Apache License 2.0
|
5 |
-
tasks:
|
6 |
-
- text-generation
|
7 |
-
|
8 |
-
#model-type:
|
9 |
-
##如 gpt、phi、llama、chatglm、baichuan 等
|
10 |
-
#- gpt
|
11 |
-
|
12 |
-
#domain:
|
13 |
-
##如 nlp、cv、audio、multi-modal
|
14 |
-
#- nlp
|
15 |
-
|
16 |
-
#language:
|
17 |
-
##语言代码列表 https://help.aliyun.com/document_detail/215387.html?spm=a2c4g.11186623.0.0.9f8d7467kni6Aa
|
18 |
-
#- cn
|
19 |
-
|
20 |
-
#metrics:
|
21 |
-
##如 CIDEr、Blue、ROUGE 等
|
22 |
-
#- CIDEr
|
23 |
-
|
24 |
-
#tags:
|
25 |
-
##各种自定义,包括 pretrained、fine-tuned、instruction-tuned、RL-tuned 等训练方法和其他
|
26 |
-
#- pretrained
|
27 |
-
|
28 |
-
#tools:
|
29 |
-
##如 vllm、fastchat、llamacpp、AdaSeq 等
|
30 |
-
#- vllm
|
31 |
---
|
32 |
-
### Important Links
|
33 |
-
|
34 |
-
🤖[Github](https://github.com/XGenerationLab/XiYanSQL-QwenCoder) |
|
35 |
-
📖[XiYan-SQL](https://github.com/XGenerationLab/XiYan-SQL) |
|
36 |
-
🌕[析言GBI](https://bailian.console.aliyun.com/xiyan) |
|
37 |
-
🤗[Modelscope Space](https://www.modelscope.cn/studios/XGenerationLab/XiYanSQL-QwenCoder-32B)
|
38 |
-
|
39 |
-
|
40 |
-
## Introduction
|
41 |
-
We are excited to open source the XiYanSQL-QwenCoder series model, dedicated to advancing the development of LLMs in the text-to-SQL domain. As of now, XiYanSQL-QwenCoder covers four mainstream model sizes: 3B, 7B, 14B, and 32B parameters, to meet the needs of different developers.
|
42 |
-
- The XiYanSQL-QwenCoder model demonstrates strong performance in SQL generation, with the XiYanSQL-QwenCoder-32B achieving a 69.03% EX score on the BIRD TEST set, setting a new SOTA with a single fine-tuned model. Other models in the series also maintain a leading position at their respective sizes.
|
43 |
-
- The XiYanSQL-QwenCoder model supports multiple SQL dialects, such as SQLite, PostgreSQL, and MySQL.
|
44 |
-
- The XiYanSQL-QwenCoder model can be used directly for text-to-SQL tasks or serve as a better starting point for fine-tuning SQL models.
|
45 |
-
|
46 |
-
|
47 |
-
## Model Downloads
|
48 |
-
|
49 |
-
|
50 |
-
| **Model** | **Download Latest** |
|
51 |
-
|-----------|------------------|
|
52 |
-
|XiYanSQL-QwenCoder-3B |[🤗 Modelscope](https://www.modelscope.cn/models/XGenerationLab/XiYanSQL-QwenCoder-3B-2502)|
|
53 |
-
|XiYanSQL-QwenCoder-7B |[🤗 Modelscope](https://www.modelscope.cn/models/XGenerationLab/XiYanSQL-QwenCoder-7B-2502)|
|
54 |
-
|XiYanSQL-QwenCoder-14B |[🤗 Modelscope](https://www.modelscope.cn/models/XGenerationLab/XiYanSQL-QwenCoder-14B-2502)|
|
55 |
-
|XiYanSQL-QwenCoder-32B |[🤗 Modelscope](https://www.modelscope.cn/models/XGenerationLab/XiYanSQL-QwenCoder-32B-2412)|
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
## Performance
|
60 |
-
The XiYanSQL-QwenCoder models, as multi-dialect SQL base models, demonstrating robust SQL generation capabilities. The following presents the evaluation results at the time of release. We conducted a comprehensive evaluation of the model's performance under two schema formats, M-Schema, and original DDL, using the BIRD and Spider benchmarks in the Text-to-SQL domain.
|
61 |
-
|
62 |
-
| Model name|BIRD Dev@M-Schema |BIRD Dev@DDL|Spider Test@M-Schema|Spider Test@DDL|
|
63 |
-
|-----------|:------------------:|:---------------:|:-------------------:|:---------------:|
|
64 |
-
|Codellama-34b | 33.05% | - | 67.74% | - |
|
65 |
-
|Deepseek-coder-33b | 47.52% | 44.72% | 72.39% | - |
|
66 |
-
|TableGPT2 | 46.35% | 47.07% | 74.76% | 77.28% |
|
67 |
-
|Codestral 22b | 50.52% | 47.00% | 78.45% | 75.47% |
|
68 |
-
|GLM-4-plus | 54.37% | - | 79.40% | - |
|
69 |
-
|Claude35_sonnet-1022 | 53.32% | 50.46% | 76.27% | 73.04% |
|
70 |
-
|Deepseek(v2.5-1210) | 55.74% | 55.61% | 82.08% | 80.57% |
|
71 |
-
|Gemini-1.5-pro | 61.34% | 57.89% | 85.11% | 84.00% |
|
72 |
-
|GPT-4o-0806 | 58.47% | 54.82% | 82.89% | 78.45% |
|
73 |
-
|XiYanSQL-QwenCoder-3B | 54.11% | 53.19% | 82.69% | 78.85% |
|
74 |
-
|XiYanSQL-QwenCoder-7B | 59.78% | 56.58% | 84.86% | 80.31% |
|
75 |
-
|XiYanSQL-QwenCoder-14B | 63.10% | 60.37% | 85.76% | 82.79% |
|
76 |
-
|XiYanSQL-QwenCoder-32B | 67.01% | 63.04% | 88.39% | 85.46% |
|
77 |
-
|
78 |
-
|
79 |
-
## Requirements
|
80 |
-
|
81 |
-
transformers >= 4.37.0
|
82 |
-
|
83 |
-
## Quickstart
|
84 |
-
|
85 |
-
Here is a simple code snippet for quickly using **XiYanSQL-QwenCoder** model. We provide a Chinese version of the prompt, and you just need to replace the placeholders for "question," "db_schema," and "evidence" to get started. We recommend using our [M-Schema](https://github.com/XGenerationLab/M-Schema) format for the schema; other formats such as DDL are also acceptable, but they may affect performance.
|
86 |
-
Currently, we mainly support mainstream dialects like SQLite, PostgreSQL, and MySQL.
|
87 |
-
|
88 |
-
```
|
89 |
-
|
90 |
-
nl2sqlite_template_cn = """你是一名{dialect}专家,现在需要阅读并理解下面的【数据库schema】描述,以及可能用到的【参考信息】,并运用{dialect}知识生成sql语句回答【用户问题】。
|
91 |
-
【用户问题】
|
92 |
-
{question}
|
93 |
-
|
94 |
-
【数据库schema】
|
95 |
-
{db_schema}
|
96 |
-
|
97 |
-
【参考信息】
|
98 |
-
{evidence}
|
99 |
-
|
100 |
-
【用户问题】
|
101 |
-
{question}
|
102 |
-
|
103 |
-
```sql"""
|
104 |
-
|
105 |
-
import torch
|
106 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
107 |
-
|
108 |
-
model_name = "XGenerationLab/XiYanSQL-QwenCoder-32B-2412"
|
109 |
-
model = AutoModelForCausalLM.from_pretrained(
|
110 |
-
model_name,
|
111 |
-
torch_dtype=torch.bfloat16,
|
112 |
-
device_map="auto"
|
113 |
-
)
|
114 |
-
|
115 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
116 |
-
|
117 |
-
## dialects -> ['SQLite', 'PostgreSQL', 'MySQL']
|
118 |
-
prompt = nl2sqlite_template_cn.format(dialect="", db_schema="", question="", evidence="")
|
119 |
-
message = [{'role': 'user', 'content': prompt}]
|
120 |
-
|
121 |
-
text = tokenizer.apply_chat_template(
|
122 |
-
message,
|
123 |
-
tokenize=False,
|
124 |
-
add_generation_prompt=True
|
125 |
-
)
|
126 |
-
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
127 |
-
|
128 |
-
generated_ids = model.generate(
|
129 |
-
**model_inputs,
|
130 |
-
pad_token_id=tokenizer.pad_token_id,
|
131 |
-
eos_token_id=tokenizer.eos_token_id,
|
132 |
-
max_new_tokens=1024,
|
133 |
-
temperature=0.1,
|
134 |
-
top_p=0.8,
|
135 |
-
do_sample=True,
|
136 |
-
)
|
137 |
-
generated_ids = [
|
138 |
-
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
139 |
-
]
|
140 |
-
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
141 |
-
|
142 |
-
```
|
143 |
-
|
144 |
-
|
145 |
-
## Acknowledgments
|
146 |
-
If you find our work useful, please give us a citation or a like, so we can make a greater contribution to the open-source community!
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|